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Abstract: A state space approach to a design of PSD robust controllers is studied for linear uncertain 
system with affine (polytopic) uncertainty. The discrete time PSD controller design is based on stability 
condition derived using parameter dependent Lyapunov-Krasovskii function in the form for time-delay 
system. The resulting design employs solution of BMI, the results are illustrated on the example. 

 

1. INTRODUCTION 

Robustness belongs to important issues in control design for 
real plants. In practice, uncertainties are always present in 
modelling and control of real systems (modelling errors due 
to linearization and approximation, disturbances etc.), which  
must be taken into consideration. The appropriate control has 
to cope with uncertainties and guarantee closed loop stability 
and required performance qualities overall the uncertainty 
domain. Various approaches have been developed in robust 
control both in time and frequency domains. A frequently 
used paradigm developed in past decades formulates the 
problem of robust stability and robust control as an 
optimization problem. Efficient computational techniques 
have been developed recently for solving Linear Matrix 
Inequality (LMI), which enables to solve a large set of 
convex problems in polynomial time (e.g. Boyd et al., 1994). 
Significant effort has been made in this field to formulate 
control problems within algebraic framework (Skelton et al., 
1998), and transform them into LMI. Though many control 
problems for uncertain linear systems can be formulated as 
convex one, there are still many important control problems 
even for linear systems, that have been proven as NP hard 
(Blondel and Tsitsiklis, 1997). Robust static output feedback 
(SOF) control belongs also to this class, generally it can be 
formulated as bilinear matrix inequality (BMI). In this case 
either solution through BMI solver (as PENBMI) can be 
used, or, convex approximation or linearization can be 
applied (deOliveira et al., 2000; Han and Skelton, 2003, 
Veselý, 2003; Rosinová and Veselý, 2003). Characterization 
of basic LMI and BMI features  in control problems can be 
found in (Van Antwerp and Braatz 2000). 
Proportional-integral-derivative (PID) controllers belong to 
the most popular and frequent ones in the industrial 
applications. For a discrete time case often PSD abbreviation 
is used instead of PID, where “S” stands for a summation 
term (instead of integration). Results on LMI approach to 
design PID controller can be found e.g. in (Ge et al. 2002, 
Zheng Feng et al. 2000). Robust PSD controller design can 
be treated as dynamic controller, which further can be 

formulated as SOF problem for augmented system including 
controller dynamics, (Rosinová and Veselý, 2007). As 
indicated above, SOF problem, which is generally non-
convex, can be either solved by solving BMI or by 
linearization (convex approximation) and then through LMI. 

In this paper, another approach is proposed for robust PSD 
controller design, where the difference term is considered in 
the framework of time-delay systems and the respective 
Lyapunov-Krasovskii function comprising two parts. In 
Section 2, robust PSD controller problem is formulated for 
linear uncertain polytopic system with quadratic performance 
index. Section 3 presents the main result- robust stability 
condition with guaranteed cost formulated for robust PSD 
controller. This condition is developed using parameter 
dependent Lyapunov function in the form for time- delay 
systems. The proposed approach is illustrated on the example 
in Section 4.  

2. PRELIMINARIES AND PROBLEM FORMULATION 

Consider the class of linear uncertain discrete-time systems 
described as: 
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2.1  PSD controller  

Assuming that the input reference variable )(tw is constant 
(its changes are relatively slow in comparison with system 
dynamics), PSD control algorithm for uncertain system (1), 
(2) can be considered as 

 )]1()([)()()(
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=

tytykkyktyktu ddd

t

i
iip   (3) 

where )()(),()( txCtytxCty ddii ==  denote the respective 
outputs for summation (discrete approximation of 
integration) and difference term of control algorithm 
respectively, which in general can differ from output )(ty ; 

dip kkk ,,  are constant matrices of corresponding dimensions.   

In parallel with standard approach for continuous-time case, 
to include summation term we introduce augmented state 
vector defined by 
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Using (4), PSD control algorithm can be rewritten as 
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From (1), (4) and (5) we obtain the uncertain closed-loop 
polytopic system described in a compact form as 
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2.2  Performance index 

A performance for closed loop system (6) is assessed using 
quadratic cost function  

 ∑
∞
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where mmnn RRRSQ ×× ∈∈ ,, are symmetric positive definite 
matrices. 

 

Definition 1 

Control law (5) is called guaranteed cost control when there 
exist PID controller parameter matrices dip kkk ,,  and a 
constant J0  such that  
 

0JJ ≤    
 
 

holds for closed loop system (6); J0 is the guaranteed cost. 

2.3  Robust stability with guaranteed cost 

Let )(tV is Lyapunov function for uncertain closed-loop 
system (6). From LQ theory, see e.g. (Rosinova et al. 2003), 
the following lemma for robust stability of system (6) with 
guaranteed cost holds. 

Lemma 1 

Control algorithm (5) is the guaranteed cost control law for 
the closed loop system (6) if and only if there exist 

0)( >tV and constant matrices dip kkk ,,  such that the 
following inequality holds for ,...1,0=t  

 0)()()( <+= tJtVtB ∆  (9) 

Moreover, summarizing (9) from initial time t0 to ∞→t , the 
following inequality is obtained 

0)( 0 <+− JtV  (10) 

Definition 1 with inequality (10) provides guaranteed cost 

)( 00 tVJ =  

 for closed loop system (6) with control law (5).  

3. MAIN RESULT: ROBUST PSD CONTROLLER 
DESIGN 

In this section a robust stability condition including 
guaranteed cost is developed based on Lyapunov-Krasovskii 
function. Due to the presence of )1( −tz in control algorithm, 
we consider parameter dependent Lyapunov-Krasovskii 
function consisting of the respective two parts for )(tz  and 

)1( −tz  

)()()( 21 tVtVtV +=   (11) 

where )()()()( 11 tzPtztV T α=  (11a) 

)1()()1()( 22 −−= tzPtztV T α  (11b) 

and nnRP ×∈)(1 α , nnRP ×∈)(2 α  are parameter dependent 
symmetric positive definite matrices of the corresponding 
dimensions. 

In the following developments we employ the backward 
difference given by 

)1()()( −−= tztztz∆  (12) 
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“to interconnect” actual and past values of z, which can be 
interpreted as discrete counterpart to Leibnitz-Newton 
formula used for continuous time-delay systems.  

In the development of a robust stability condition for 
uncertain closed-loop system we use augmented state vector  
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Firstly, we express particular components which will be used 
later in terms of denotation (7), (12) and (13).  

Control law (5) can be rewritten as 
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Closed loop system (6) can be analogically rewritten as 
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The first difference of Lyapunov-Krasovskii function (11) is 
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 (17c) 
Substituting (17b) and (17c) into (17a) and rearranging, we 
obtain )(tV∆  in a compact form as 
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The main result on robust stability condition is given in the 
next theorem. 

Theorem 1 

Consider the uncertain discrete-time system (1) with PID 
controller (3) and parameter dependent Lyapunov-Krasovskii 
function (11),(11a),(11b). Control algorithm (3), or, 
alternatively, (14) is guaranteed cost robust control law for 
performance index (8) if and only if there exist positive 
definite matrices nnRP ×∈)(1 α , nnRP ×∈)(2 α and constant 
matrices 321 ,, NNN of appropriate dimensions such that 
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Proof 

To derive robust stability condition we use (9) together with 
(16). Due to (16), the following equality holds 
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By substituting from (17), (14) and (8) to (9) for )(tJ and 
)(tV∆ respectively, and adding (20) to the left hand side of 

(9), the resulting inequality (19) is obtained. □ 

Robust stability condition (19) can be advantageously applied 
for polytopic systems with uncertainties respective to (2). 
Parameter dependent Lyapunov-Krasovskii function is 
considered in the form 
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Robust stability condition (19) is in this case linear with 
respect to α (there are no products of matrices depending on 
α), therefore it is equivalent to  
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T α , Ni ,...,1=  (22) 

where ∑
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N

i
ii

1
0,1 αα . 

Note, that robust stability condition (22) is in LMI form for 
stability analysis – for unknown matrices 321 ,, NNN , ii PP 21 , . 
For robust PID controller design, where unknown controller 
parameter matrices dip kkk ,,  are to be found, inequality (22) 
turns to bilinear matrix inequality (BMI), which can be 
solved either directly using some BMI solver or through  
linearization of nonlinear terms, see e.g. (deOliveira et al. 
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2000).  We have applied the former approach and solved 
BMI (22) via PENBMI solver with YALMIP interface. 

4. EXAMPLE 

In this section the proposed approach to design a robust PSD 
controller is illustrated on the example.  

Consider uncertain system (1), (2) with 3 states, 2 inputs and 
2 outputs with nominal model 
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The respective uncertain polytopic model vertices for (2) are: 

vertex 1: uu BBBAAA +=+= 0101 , , 

vertex 2: uu BBBAAA −=−= 0202 ,  

eigenvalues of vertex system matrices 1A , 2A  are: 

:)( 1Aeig
4606.0
6032.0
0004.1

  :)( 2Aeig
4602.0
5951.0
8905.0

   

Vertex 1 corresponds to unstable system. 

Performance index (8) is considered, with weighting matrices 

555522 *1.0,*1.0, xxx ISIQIR === . 

The aim is to find PSD controller parameter matrices 
dip kkk ,,  (of dimensions 2x2) so that the closed loop system 

(6) is robustly stable with guaranteed cost. The outputs for 
summation and difference part of control algorithm 
are CCCC di == , . 

PSD controller has been designed by solving (19) as BMI. 
Two alternative PSD controllers have been computed:  

using parameter dependent Lyapunov function (11) denoted 
as PQS 

using simple quadratic Lyapunov function, with the same 
Lyapunov function matrices   21 , PP in (11) for the whole 
uncertainty domain; this case is computed for comparison 
and denoted as QS 

The obtained results are summarized in Tab.1    

 PQS QS 

pk  
⎥
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−−
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Closed-loop system eigenvalues 

Vertex1     0.4054 
    0.5990 
    0.7277 
    0.8415 
    0.9968 

    0.4721 
    0.6962 
    0.7126 
    0.8715 
    0.9968 

Vertex2     0.4052 
    0.5788 
    0.7412 
    0.8433 
    0.8846 

    0.4713 
    0.6537 
    0.7500 
    0.8729 
    0.8837 

Tab.1  PSD controller design results for parameter dependent 
Lyapunov function (PQS) and quadratic Lyapunov function 
(QS). 

Step responses obtained from simulation in Simulink for 
vertices 1A  and 2A  are shown in Fig. 1 and 2. 
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Fig.1 Comparison of closed-loop step responses for PSD 
controllers QS and PQS in vertex 11, BA . 
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Fig.2 Comparison of closed-loop step responses for PSD 
controllers QS and PQS in vertex 22 , BA . 

From Fig.1 and 2 it can be seen that the closed-loop 
dynamics favours parameter dependent Lyapunov function 
based design over the quadratic one. 

The respective control inputs are shown in Fig.3. 
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Fig.3 Comparison of control inputs in vertex 22 , BA  

5. CONCLUSION 

In the paper the novel PSD controller design procedure is 
presented, which is based on Lyapunov function with special 
term corresponding to time-delay part of control algorithm. 
The resulting robust stability condition is in BMI form, in the 
illustrating example the PSD controller design has been 
performed using BMI solver.  
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