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Abstract: The paper deals with identification of nonlinear cascade systems with general output backlash,
where instead of the straight lines determining the upward and downward parts of backlash characteristic
general curves are considered. A new form of general backlash description is leading to the mathematical
model, which has all the model parameters separated. The identification based on this model is solved as a
quasi-linear problem using an iterative algorithm with internal variables estimation.

1. INTRODUCTION

One of the most important nonlinearities that limit control
systems performance in many applications is the so-called
backlash (Kalas et al, 1985). Unfortunately, there are only
few contributions in the literature on the identification of
systems with backlash (Bai, 2002), (Cerone and Regruto,
2007), (Dong et al, 2009), (Dong et al, 2010), (Giri et al,
2008), (Hägglund, 2007), (Vörös, 2010a), (Vörös, 2010b).

In control systems it is assumed that the backlash is “linear”,
i.e., straight lines approximate the upward and downward
curves of the characteristic (Tao and Kokotovic, 1993), (Tao
and Canudas de Wit, 1997), (Nordin and Gutman, 2002).
This simplifies the system description, however, in some
cases it may lead to inaccuracies. The components of control
systems may be free from backlash when new, but after some
time in use the wear results in an introduction of backlash in
the systems. In general the form of backlash changes with
time and wear, regardless of what form of backlash was
present when the component was new. Therefore it may be
appropriate to generalize the backlash and consider general
upward and downward curves. The only works dealing with
the identification of systems with general switch and
backlash nonlinearities were published in (Giri et al, 2010),
(Rochdi et al, 2010a), (Rochdi et al, 2010b). The proposed
approach is based on two independent, but structurally
symmetric identification schemes. The first one determines
the points located on the descendent border of general
nonlinearity as well as the parameters of the linear
subsystem. The second identification scheme determines the
points located on the ascendent border of general nonlinearity
and the parameters of the linear subsystem. The key idea is to
use pulse-type periodic input signals so that only the points of
interest are excited on each border.

In this paper an identification method for cascade systems
with output backlash based on a new mathematical model for
general backlash is presented. First, an analytic description of
this hard dynamic nonlinearity is described, which uses

appropriate switching functions and their complements
(Vörös, 2009). Then the identification method for cascade
systems consisting of a linear dynamic system followed by a
general output backlash is proposed. This is based on a
mathematical model, where the parameters of linear dynamic
system and the parameters characterizing the general
backlash are separated, hence their estimation can be solved
as a quasi-linear problem using an iterative method with
internal variable estimation (Vörös, 2001, 2003, 2007).

2. GENERAL BACKLASH MODEL

In the case of “linear” backlash the left and right branches of
the characteristic are considered to be straight lines.
However, in some applications the straight lines are only
advantageous approximations of general curves constituting
the left and right branches of backlash as shown in Fig. 1.

Fig. 1 General backlash characteristic

The general backlash characteristic can be described by the
equation (Vörös, 2009)
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where the mappings L[x(t)] and R[x(t)] describe the left and
right branches of the characteristic, respectively, the x-axis
values zL and zR are given as follows:

   )()( LzL1ty =−                                   (2)

   )()( RzR1ty =−                                   (3)

Assume the left and right curves can be approximated by the
polynomials
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respectively, where cL > 0, cR > 0 are the intersections of
L[x(t)] and R[x(t)] with the x-axis. Then the general backlash
characteristic can be written as
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After introducing the internal variables

   L1 ctxt += )()(ξ                                   (9)

   R2 ctxt −= )()(ξ                                 (10)

the following variables based on (7) and (8) can be defined:
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where the switching function
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is switching between two sets of values, i.e., (− ∞, s) and (s,
∞). Then the general backlash can be modeled by one
difference equation as follows:
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To include the deadzone parameters cL and cR into the
backlash model, we can separate the first terms of the sums in
(14) and half-substitute from (9) and (10) as follows:
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Now the input/output relation for the generalized backlash
(15) is identical with that of (1). All the model parameters are
separated and the model is linear in the input, output and
internal variables. This model allows the upward and
downward curves to be different provided that the
intersection of the two curves is not in the region of practical
interest.

3. SYSTEMS WITH GENERAL OUTPUT BACKLASH

In many real control systems the backlash appears in a
cascade connection with linear dynamic systems. One of the
simplest cases is the cascade system where a linear dynamic
system is followed by a backlash as shown in Fig. 2. The
linear dynamic system can be described by the difference
equation as
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where u(t) and x(t) are the inputs and outputs, respectively.

Fig. 2 Cascade system with general output backlash

Let the general backlash be described by (15). The output
equation of this cascade system can be constructed by
connecting (15) and (16). However, a direct substitution of
(16) into (15) would lead to a quite complex expression,
therefore the so-called key term separation principle can be
applied (Vörös, 2010c). It means that (16) will be substituted
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only for x(t) in the first term of (15). Moreover, in this
connection of two systems we can assume that mL1 = 1, hence
the model equation for the cascade system with general
output backlash can be written as
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where the parameters of both the linear system and the
general backlash are separated and the equation is quasi-
linear as the variables ξ1(t), ξ2(t), f1(t) and f2(t) depend on the
backlash parameters and the internal variable x(t) depends on
the linear system parameters. Defining the vector of data
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and the vector of parameters
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the cascade system with general output backlash can be
written in the vector form as follows:

           θϕ )()]()][()[()( ttf1tf11tyty T
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As the variables ξ1(t), ξ2(t), f1(t), f2(t) and the internal variable
x(t) in (18) are unmeasurable and must be estimated, an
iterative parameter estimation process has to be considered
similarly as in (Vörös, 2007). Assigning the internal variable
x(t) in the s-th step as
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and the estimated variables ξ1(t), ξ2(t),  f1(t) and f2(t) in the s-
th step as
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the error to be minimized in the estimation procedure is
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where sϕ(t) is the data vector with the corresponding
estimates of variables x(t), ξ1(t), ξ2(t), f1(t) and f2(t) according
to (22) − (26) and s+1θ is the (s+1)-th estimate of the
parameter vector.

The steps in the iterative procedure may be now stated as
follows:

a) Minimizing the least squares criterion based on (27)
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where N is the number of measured input and output samples,
the estimates of parameters s+1θ are computed using sϕ(t) with
the s-th estimates of variables sx(t), sξ1(t), sξ2(t),  sf1(t) and
sf2(t).

  b) Using (22) − (26) the estimates of s+1ϕ(t) are evaluated by
means of the recent estimates of corresponding parameters.

  c) If the estimation criterion is met the procedure ends, else
it continues by repeating steps a) and b).

In the first iteration only the parameters of linear dynamic
system are estimated and the initial values can be chosen
zero. However, nonzero initial values of the general backlash
parameters  mR1, cL and cR have to be considered for
evaluation of 1ϕ(t) to start up the iterative algorithm.

4. CONCLUSIONS

In this paper a new analytic form of general backlash
characteristic description was used in the mathematical model
for cascade systems including this type of dynamic
nonlinearity in the output. Iterative algorithm was proposed
enabling simultaneous estimation of both the backlash
parameters and the parameters of the cascaded linear
dynamic system on the basis of input/output data.
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