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Abstract: Solution to the problem of fault accommodation in nonlinear time delay dynamic systems is 
related to constructing the control law which provides full decoupling with respect to fault effects. Existing 
conditions are formulated and calculating relations are given for the control law. 

 

1. INTRODUCTION 

Fault tolerant control (FTC) is a tool intended for increasing a 
reliability and safety for critical purpose control systems. The 
goal of FTC is to determine such control law that preserves 
the main performances of the faulty system while the minor 
performances may degrade. There are two principal 
approaches to FTC. The first of them involves adaptive 
control techniques and assumes on-line fault detection and 
estimation followed by control law accommodation, see, e.g. 
(Blanke et al 2003, Jang et al 2006, Staroswiecki et al 2006). 
The second approach is focused on such control law 
determination which provides full decoupling with respect to 
fault effects in the output space of the system. In contrast to 
the first approach, the second one does not need in fault 
estimation. Therefore, such approach looks reasonable if on-
line fault estimation is impossible. 

Full decoupling problem solution under appropriate its 
statement has been obtained in (Isidori 1995) for affine 
systems. But the possibility of this solution applying in the 
framework of FTC problem is strictly limited by the demand 
on the system state vector availability (this vector is 
immediately included into the control law description). As a 
rule, not all components of the state vector are immediately 
measurable in practice, and estimation of full state vector for 
the system with unknown (affected by the faults) dynamics is 
impossible.  

In (Shumsky et al 2009, Shumsky & Zhirabok 2010) a 
solution to the accommodation problem in nonlinear systems 
has been obtained on the basis of algebra of functions and 
differential geometry (Shumsky & Zhirabok 2006). In present 
paper, this problem is solved for time delay systems. These 
systems form an important class of nonlinear systems. They 
are used to represent a wide variety of processes and systems 
including hydraulic/pneumatic systems, communication 
systems, biological systems, etc. To solve the problem of 
fault accommodation for this class of systems, we use so-
called logic-dynamic approach which allows obtaining a 
solution for time delay nonlinear systems with no 
differentiable nonlinearities using linear methods. Besides, 
we use more sophisticated treatment in contrast to the paper 

(Shumsky et al 2009) which allows obtaining in some cases 
more simple solution with the point of view of designed 
systems dimensions. 

Consider nonlinear systems described by equation  
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In (1), x, y, and u are vectors of state, output, and control; F , 
dF , C, A, G , L, and H are known matrices of appropriate 

dimensions; ϕ  is an arbitrary scalar nonlinear function, 
vRt ∈ϑ )(  is the vector describing the fault. Assume that for 

healthy system it holds 0)( =ϑ t . For simplicity, the system 
with a single nonlinearity is considered. Denote system (1) as 
Σ .  

It is assumed that fault detection procedure is performed by 
known methods (Blanke et al 2003). If a fault occurs, )(tϑ  
becomes an unknown function, and a solution to the control 
problem based on model (1) becomes impossible. To 
overcome this difficulty, it is suggested to obtain the vector 

)(tu  according to 

))(),(),(()( 0 tutxtygtu ∗=                         (2) 

for some function g where mRtu ∈∗ )(  is a new control 

vector, ,)(0
qRtx ∈  ,nq ≤  is a state vector of the system has 

to be determined and described by equation 
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Note that model (3) does not depend on the unknown vector 
)(tϑ .  

Assume that the model obtained by substitution (2) into (1) 
can be transformed to the form 
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with qpRtx p ≤∈ ,)(* . If the control (2) exists and the fault 
occurred and detected, then a solution to the control problem 
is performed on the basis of model (4) which does not contain 
the unknown vector )(tϑ . As a result, fault accommodation 
effect is achieved. Scheme for system Σ control is shown in 
Figure 1. 

Note that the use of the control (2) assumes moving system 
(1) only in some subspace of its state space which 
corresponds to the state space of system (4). Under this, the 
goal of control should be achieved by appropriate choosing 
the trajectory belonging to this subspace. The need of 
appropriate trajectory existence (or a possibility to correct the 
goal of control for finding appropriate trajectory) restricts the 
sphere of the considered approach application.  

The problem is to determine the existing condition for the 
control (2) and to obtain all matrices describing systems (3) 
and (4). To solve this problem, is it necessary initially to 
design the auxiliary system Σ′  described by equation 
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     (5) 

2. LOGIC-DYNAMIC APPROACH 

So-called logic-dynamic approach developed in (Zhirabok & 
Usoltsev 2002) will be used for designing the system Σ′ . The 
feature of this approach is the use of conventional linear 
algebraic tools in contrast to nonlinear algebraic and 
differential geometric tools of the work (Shumsky & 
Zhirabok 2006).  

The logic-dynamic approach for systems in the form (1) 
includes the following three steps. 

Step 1. Replacing the initial nonlinear system (1) by certain 
linear system. 

Step 2. Solving the problem under consideration for this 
linear system with some additional restrictions. 

Step 3. Transforming the obtained linear system into the 
nonlinear one by adding a nonlinear term. 

 

Fig. 1. Scheme for system Σ control 

At the first step of this approach, the nonlinear term 
))(),(( tutAxCϕ  is removed from system (1). The 

corresponding linear system is of the form 

)()()()()( tLtGutxFtFxtx d ϑ++τ−+=& , 

)()( tHxty = .                             (6) 

It will be named the linear part of system (1).  

At the second step, according to the logic-dynamic approach, 
a linear part of system (5) is designed. It is well-known from 
the fault detection and isolation theory of linear systems 
(Frank 1990) that for this linear part design, the state x′  is a 
linear combination of system (6) state according to  

)()( txtx ′=Φ  

in the unfaulty case after the response to unlike conditions 
has died out. We will say, with this equality in mind, that 
system (5) estimates the initial system state vector with 
accuracy to a function realized by the matrix Φ. In the 
absence of faults, the following set of equations can be 
obtained by analogy with (Zhirabok & Usoltsev 2002): 

HJFF ′+Φ′=Φ ,     Φ′=Φ dd FF , 

GG Φ=′ .                                (7) 

It follows immediately from definition of the matrix Φ  and 
(7) that  
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This equality is true if the following relations hold:  
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One can show that the relation ⎟⎟
⎠
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the equality 
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By analogy, it can be shown that the second equation in (7) is 
equivalent to equality 
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⎞
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⎝
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Φ
=Φ

dF
rankrank )( .                         (9) 

These conditions are those mentioned at Step 2. If the matrix 
Φ  satisfies the first equation in (7) and these conditions, the 
problem under consideration can be solved.  

y u 

x

      Σ 

Σ0

g 
u∗ 
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To ensure if system (3) is independent of the unknown vector 
)(tϑ , or if the full decoupling demand is fulfilled, the 

equality 0=ΦL  has to hold.  

3. SYSTEM Σ′  DESIGN 

The matrix Φ  can be obtained as follows. Introduce the 
matrix 0L  of maximal row rank such that 00 =LL . 
Condition 0=ΦL  implies the equality  

0NL=Φ  

for some matrix N . Replace the matrix Φ  in the first 
equation in (7) with 0NL  that gives HJNLFFNL ′+′= 00  
and transform it as follows: 

0)( 0

0
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Expression (10) can be considered as an algebraic equation 
for the matrices N , F ′ , and J ′ .  

Let the matrix (A B C) presents all linearly independent 
solutions to equation (10), i.e. 
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To use the matrices A and B for the system Σ′  design, the 
relation AFB ′−=  for the matrix F ′  must hold according to 
(10) and (11). To obtain these matrices, find rows of the 
matrix B which are independent of the matrix A rows and 
remove them from (A  B  C). Denote the obtained matrix as 
( 0A  0B  0C ). Set 0AN =  and 0NL=Φ . If the matrix Φ  
satisfies conditions (8) and (9), the system Σ′  can be built 
otherwise the problem under consideration is not solvable 
because in this case full decoupling can not be achieved.  

Suppose that conditions (8) and (9) hold. Take GG Φ=′  and 
0CJ −=′ ; the matrices F ′  and dF ′  are solutions to the 

algebraic equations 0BNF −=′  and Φ′=Φ dd FF  
respectively.  

As a result, a linear part of the system Σ′  is described by the 
following equation:  

)()()(+)()( tyJtuGtxFtxFtx d ′+′+τ−′′′′=′& .         (12) 

At the third step of design, it is necessary to transform the 
obtained linear system into the nonlinear one. According to 
(Zhirabok & Usoltsev 2002), the nonlinear term  
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with the matrices CC Φ=′  and A′  obtained from the 
algebraic equation  
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must be added to the right-hand side of equation (12) that 
gives  
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Note that the algebraic equations ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Φ
′=

H
AA  and 

Φ′=Φ dd FF  are solvable because conditions (8) and (9) hold 
respectively.  

4. CONTROL LAW DETERMINATION 

To carry out an analysis of the system Σ′ , introduce the 
matrices H ′  and R whose rows present all linearly 
independent solutions to the algebraic equation  

0)( =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Φ
−′

H
RH . 

Note that the vector Ry  presents those components of the 
vector y  and their linear combinations which can be 
computed as a function of the state vector x′ , i.e. 

xHRy ′′= . Consider two cases.  

(1) Every component of the function f ′  contains only those 
components of the vector y  which depend on the vector Ry  
components; in this case set  

jj uu *= ,      mj ,...,1= . 

This means that a block “g” in Figure1 is absent.  

(2) Suppose that Case 1 does not hold and find in the function 
f ′  all terms with minimal numbers of variables in the form  

),,( uyxi ′α ,      ri ,...,1= , 

which contain the control u  and components of the vector y  
functionally independent of the vector Ry  (some terms do 
not contain the variable x′ ). Denote 

).,,(
             

),,,(

*

11*

uyxu

uyxu

rr ′α=

′α=
M                           (14) 

To check solvability of these nonlinear algebraic equations, 
assume that  

18th International Conference on Process Control
June 14–17, 2011, Tatranská Lomnica, Slovakia Le-We-2, 010.pdf

52



 
 

     

 

s
u

rank =⎟
⎠
⎞

⎜
⎝
⎛

∂
α∂  

for all yx ,′ , and u except perhaps on a set of measure zero, 

where T
1 )( rαα=α K , and the function α  contains 

m′ , mm ≤′ , components of the vector u as its arguments. It 
is obvious that the inequalities sm ≥′  and sr ≥  hold by 
definition of rm ,′ , and s . Assume for simplicity that if some 

ju  is contained in the function α , then it is not in other part 

of the function f ′ . Consider three cases. 

(1) srm ==′ ; in this case the system of equations (14) is 
solvable for some m′  components of the control vector u 
(without loss of generality suppose that they are 1u , …, mu ′ ): 

),,( *uyxu jj ′γ= ,     mj ′= ,...,1 .              (15) 

Take 

jj uu *= ,     mmj ,...,1+′= . 

(2) srm =>′ ; in this case the function α  contains rm −′  
redundant components of the vector u. Without loss of 
generality assume that these components are the last rm −′  
ones, i.e. 1+ru , …, mu ′ . Using additional equations for these 
components  

jj uu *= ,     mrj ,...,1+= ,                   (16) 

one can solve the system of equations (14) in the form (15) 
for rj ,...,1= . 

(3) srm >≥′  or smr ≥′> ; in these cases find the matrix P 
with s rows such that  

s
u

Prank =⎟
⎠
⎞

⎜
⎝
⎛

∂
α∂  

for all yx ,′ , and u except perhaps on a set of measure zero. 
The matrix P collects s functionally independent components 
from all ones of the function α . The redundant components 

1+su , …, mu ′  (when sm >′ ) are now in the function αP . 
Using (16) for msj ,...,1+= , one can solve the equation  

α= Pu*  

in the form (15) for sj ,...,1= . 

5. SYSTEM 0Σ  DESIGN 

Note that in some cases all relations in (15) do not depend on 
the components of the vector x′ ; in this case the system 0Σ  
is absent. In some cases these relations depend on all 
components of the vector x′ ; in this case the system 0Σ  
coincides with Σ′ .  

Generally, (15) depends on some components of the vector 
x′ , in this case it is necessary to design the nontrivial system 

0Σ . To do this, define the matrix Q  (by analogy with Φ ) 
such that  

)()( 0 txtxQ =′       t∀ .                         (17) 

It can be shown that the following set of equations 
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dd FQ
FQ

Q
F
F

0

0 ,                           (18) 

101 AQA ′=                                  (19) 

holds where )( 21 AAA ′′=′ , )( 02010 AAA = . Equations 
(18) and (19) are equivalent to equations  
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)(
A
Q
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respectively. The matrices 0F , 0dF , and 01A  are obtained 
from (18) and (19) respectively, other matrices described the 
system 0Σ  can be found as follows:  

JQJ ′=0 ,     GQG ′=0 , 

CQC ′=0 ,     202 AA ′= .                      (22) 

Equality (17) is used for replacing the vector x′  in (15) by 
0x . As a result, (15) is transformed into  

),,( *0 uyxgu jj = ,       mj ′= ,...,1 , 

corresponding to the general law (2). 

The matrix Q  can be constructed according to the following 

procedure. Let )1(x′  be a subvector of x′  whose components 
are in the function α  and xQx ′=′ )1()1( . Consider three 
cases.  

(1) If conditions (20) and (21) hold with )1(QQ = , then set 
)1(QQ =  and define the matrices 0F , 0dF , 0J , 0G , 0C , 0A  

from (18), (19), and (22) respectively.  

(2) If some rows of the matrix 1A′  (denote them A ′′ ) do not 

satisfy condition (21), set ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

′′
=

A
QQ

)1(
(2) , otherwise 

)1((2) QQ = . If condition (20) holds with )2(QQ = , then set 
)2(QQ =  and define the matrices 0F , 0dF , 0J , 0G , 0C , 

0A  from (18), (19), and (22) respectively. 
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(3) If some rows of the matrix ⎟
⎟
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Q
Q  and check condition (20). If it holds, set 

)3(QQ =  and define the matrices 0F , 01A , 0J , 0G , 0C , 

02A  from (18), (19), and (22) respectively. Otherwise repeat 
above operations until condition (20) satisfies. Let Q  be 

equal to the final matrix (*)Q ; define the matrices 0F , 0dF , 

0J , 0G , 0C , 0A  from (18), (19), and (22) respectively.  

As a result, the system 0Σ  is described as follows: 
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6. SYSTEM *Σ  DESIGN 

Consider two kinds of components of the function f ′ : the 
first kind contains components of the vector y  functionally 
independent of the vector Ry  and do not depend on the 
control u ; the second kind contains those components of the 
function α  which are not in the function αP  (if α≠αP ). 
Denote a set of these components numbers by 

),...,,( 21 knnnN = .  

If ∅≠N , then the system Σ′  contains components of the 
vector y which can not be decoupled from the unknown 
function )(tϑ . In this case Σ′  must be redesigned as follows. 
Remove rows with numbers knnn ,...,, 21  from the matrix 

( 0A  0B  0C ) and analyze the obtained matrix by analogy 
with the matrix (A B C). Denote the obtained matrix as 
( 00A  00B  00C ) and set  

00AN = ,     0NL=Φ ,     GG Φ=′ ,     00CJ −=′ ; 

the matrix F ′  is a solution to the equation 00BNF −=′  (we 
denote the redesigned system and its elements as the initial 
ones for simplicity). Other matrices of the redesigned system 
can be obtained as it is described above.  

If ∅=N , then the system Σ′  is not need to be redesigned. 
Assume that the general description of the initial or 
redesigned system is given by (13).  

Consider the redesigned system Σ′  and find all terms in the 
form  

),,( uyxi ′α ,      ri ,...,2,1= , 

which are investigated in Section 4. Replace all these terms 
by components of the new control vector *u  according to 

(14). The system Σ′  may contain components of the vector 
y  which depend on the vector Ry  only. These components 

must be replaced by components of the vector x′  as follows. 
Suppose that some jy  is in Σ′  and )(Ryy j δ=  for some 
function δ . Then 

)()()()( xHxHRHxRyy j ′′δ=Φ′δ=δ=δ= . 

Take  

jj xx ′=* , xpj ′== dim,...,1 . 

These replacements transform the system Σ′  into the system 
*Σ . 

7. ILLUSTRATIVE EXAMPLE 

Consider the system described by the model 

,
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The following matrices can be chosen for logic-dynamic 
description of the initial system: 
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The matrix 0L  is computed as follows: 
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It can be shown that  
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It is easily to check that conditions (8) and (9) hold. As a 
result, system (3) is described as follows 
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An analysis shows that  
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Because the first equation contains the variable 3y  which is 
functionally independent of Ry , then take 

231),,( uyxuyx +′=′α , 1==′= smr . Set 2312* uyxu +′= , 
then 312*2 yxuu ′−= . It is easy to show that 

)0001()1( =Q . One can check that conditions (20) and 

(21) hold, then )1(QQ = , 101 xx ′= , and the system 0Σ  is 
described by equation  

)()()()()( 23010101 tutytxtxtx +−−=& . 

Finally, law (2) takes a form  

1*1 uu = ,     3012*2 yxuu −= .                (23) 

Since ∅=N , the system Σ′  is not need to be redesigned. 
Description of the system *Σ  is as follows:  
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tutx
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x& .                 (24) 

It should be noted that methods suggested in the paper 
(Shumsky et al 2009) can be modified for time delay 
systems. Applying them to the considered example, one 
obtains the following results: the system 0Σ  coincides with 
Σ′  and is 4-dimensional in contrast to the above 1-
dimensional system 0Σ ; an equation for the control 1u  is not 
trivial in contrast to our case 1*1 uu = ; the system *Σ  is 2-
dimensional in contrast to our 4-dimensional system (24). 

For simulation, set 1=τ , the control ttu sin)(1 = , 
ttu sin5)(2 = . The function )(tϑ  is modelled by variate with 

the mean equal to zero and the variance equal to 20. Figure 2 
shows the output 1y  behaviour under 0)( =ϑ t ; Figure 3 
shows the output 1y  behaviour under 0)( ≠ϑ t  without use of 
the law (2); Figure 4 shows the output 1y  behaviour under 

0)( =ϑ t  with use of the law (23).  

Clearly, this law provides full decoupling the output 1y  with 
respect to the fault, and the fault accommodation effect has 
been achieved.  

8. CONCLUSION 

The problem of fault accommodation in nonlinear time delay 
systems has been studied. More general case with several 
nonlinearities can be considered based on the logic-dynamic 
approach by analogy with (Zhirabok & Usoltsev 2002). Since 
this approach uses linear operations only, it is easy to show 
that the theory described in the paper can be applied to 
discrete-time dynamic systems.  
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Fig. 2. Output 1y  behaviour under 0)( =ϑ t  

 

Fig. 3. Output 1y  behaviour under 0)( ≠ϑ t  without 
correction of the input 2u   

 

Fig. 4. Output 1y  behaviour under 0)( ≠ϑ t  with the input 

2u  corrected according (23) 
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