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AN OFTEN MISSED DETAIL: FORMULA RELATING PEEK SENSITIVITY 

WITH GAIN MARGIN LESS THAN ONE 

M. Šebek and Z. Hurák 

Department of Control Engineering, Faculty of Electrical Engineering 

Czech Technical University in Prague 

fax: + 420-224-918-6460, e-mails: m.sebek@polyx.cz, hurak@fel.cvut.cz 

Abstract: An inequality relating gain margin with sensitivity peek value is presented in 

numerous basic control textbooks. In fact, this inequality fails to hold as soon as the 

open-loop Nyquist plot crosses the negative real axis on the left of the critical point. 

This opposite case is usually ignored by the textbook authors. A simple alternative in-

equality is derived in the paper to cover the not so popular opposite case. This fills a 

small gap one often encounters in basic control courses. 
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1 INTRODUCTION 

Several modern control textbooks provide a simple 

inequality relating gain margin GM to the peak of 

sensitivity function MS in their sections devoted to 

frequency domain design specifications. Along with 

another inequality relating similarly phase margin and 

MS, this approach makes it possible to express tradi-

tional design specs in a unified manner using only 

MS.  

This inequality can be found in modern control text-

books e.g. (Skogestad et al. 2005), (Seborg et al. 

2004) etc. Unfortunately, it appears to work only in 

the case of GM > 1 when the open-loop transfer func-

tion Nyquist plot crosses the negative real axis on the 

right of the critical point (-1,0). In fact, it is invalid in 

the opposite case, when the open-loop transfer func-

tion Nyquist plot crosses the negative real axes on the 

left of the critical point so that GM < 1. 

In such an opposite case, the standard inequality must 

be replaced by similar yet different one. Its derivation 

is so simple that the authors consider their contribu-

tion minor. On the other hand, they believe that this 

minor but often encountered gap should be filled. The 

authors are not aware of any paper or textbook pre-

senting the opposite-case inequality but would not be 

surprised to learn that it has been published anyway. 

2 GAIN MARGIN AND PEAK SENSITIVITY 

As usually, we denote the open-loop transfer function 

by ( )L s and the closed loop sensitivity function by  

 
1

( )
1 ( )

S s
L s




 (1.1) 

throughout the paper. For a particular frequency 

0  , the distance d  
of the corresponding open-

loop Nyquist plot point ( )L j  from the critical point 

 1,0
 
in the complex plain reads  

 
 dist ( ), 1 ( ) ( 1)

( ) 1 1 ( )

d L j L j

L j S j

  

 

     

  
 

while the minimum distance mind
 
of the whole Ny-

quist plot of ( )L s
 
from the critical point  1,0

 
is 

well known to be 

 

  

 

 

min inf dist ( ), 1

inf ( ) 1

inf 1 ( )

1 sup ( ) 1 S

d L j

L j

S j

S j M

















 

 



 

 (1.2) 
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Here, as often, 
SM  stands for the peek sensitivity 

function value or its H
 norm  

 sup ( ) ( )SM S j S s





   

It is evident that for any particular frequency   is 

 mind d  . (1.3) 

If only the open-loop gain happens to be uncertain, 

the frequency 
180   at which the open-loop Ny-

quist plot ( )L j
 
crosses the negative real axis plays 

a crucial role. Then the distance of the negative real 

axis crossing point 
180( )L j

 
from the critical point 

 1,0
 

denoted here by  180 180dist ( ), 1d L j 
 

gives rise to the classical concept of gain margin GM. 

 

 

Fig. 1: The case of 1GM   frequently  

encountered in textbooks 

 

3 THE CLASSICAL CASE 

Only the classical case is encountered in textbooks 

when 1GM   because the open-loop transfer func-

tion Nyquist plot crosses the negative real axis on the 

right of the critical point as in Fig 1. Note the gain 

margin depicted in Fig 1 according to its standard 

definition. It such a situation, we denote the gain 

margin by maxGM to emphasize its physical meaning: 

A nominally stable closed loop remains stable even 

when the open-loop gain is multiplied by any factor 

k   such that 

maxk GM  

The figure reveals immediately that 

 180

max

1
1d

GM
   

 
which further implies 

 180

max

1
1d

GM
   (1.4) 

Putting together (1.2) and (1.4) with (1.3) yields 

 
180 min

max

1 1
1

S

d d
GM M

     (1.5) 

and finally 

 
max

1

S

S

M
GM

M



 (1.6) 

results. This is the inequality frequently encountered 

in textbooks. It turns out, however, that (1.6) fails to 

hold as soon 1GM   as well as in other more com-

plex cases. 

 

4 THE OPPOSITE CASE 

Let us now investigate the opposite case when 

1GM   and the open-loop Nyquist plot crosses the 

negative real axis on the left from the critical point. If 

this happens, the inequality (1.6) is not valid any 

longer. However, a similar yet different formula can 

easily be derived. The situation is illustrated on Fig 2.  

 

 

Fig. 2: The opposite case of 1GM    

 

In such a case, we denote the gain margin by minGM
 

to emphasize that a nominally stable closed loop re-

mains stable even when the open-loop gain is multip-

lied by any factor k   such that 

minGM k  

By definition, min0 1GM  . It is clear from Fig 2, 

that now 180 min1 1d GM  so that 

 180

min

1
1d

GM
   (1.7) 

 Combining (1.2) and (1.7) with (1.3) again implies 

 
180 min

min

1 1
1

S

d d
GM M

     (1.8) 
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This finally gives rise to the "opposite" formula 

 
min

1

S

S

M
GM

M



 (1.9) 

This is the missing inequality to replace (1.6) in the 

opposite case. Although (1.9) is as simple and as 

practical as (1.6), this inequality is missing in the 

textbooks. Much worse, even the concept of two-

sided margin as well as the fact of the two-sided 

crossing itself is ignored by the most of textbooks. 

One of notable exceptions is (Zhou, Doyle and Glov-

er, 1996).  

 

5 THE TWO-SIDED CASE 

It is even possible that the open-loop Nyquist plot 

crosses the negative real axis both on the left form the 

critical point and on the right of it as in Fig 3.  

 

 

Fig. 3: The two-sided case 

 

Whenever this happens, we must employ two differ-

ent gain margins at the same time: the minimum gain 

margin minGM as well as the maximum gain margin 

maxGM . The case of two-sided crossing is illustrated 

by Fig. 3 where the both margins are indicated. Phys-

ical meaning of the two margins is as follows: A no-

minally stable closed loop remains stable even when 

the open-loop gain is multiplied by any factor k  such 

that 

 min maxGM k GM   (1.10) 

However, the closed loop stability is lost as soon as 

either mink GM or maxk GM .  

We proceed as above applying simultaneously (1.6) 

for maxGM and (1.9) for minGM . Putting (1.6), (1.9) 

and (1.10) together yields 

 min max
1 1

S S

S S

M M
GM k GM

M M
   

 
 (1.11) 

Hence one can replace  (1.10) by another, possibly 

narrower, interval described only by means of 
SM  as 

follows 

 
1 1

S S

S S

M M
k

M M
 

 
 (1.12) 

 

6 THE GENERAL CASE 

Should the open-loop Nyquist plot cross the negative 

real axis several times on the left and/or right side of 

the critical point (-1,0), only one crossing on each 

side counts (the closest one to the critical point, of 

course). The above reasoning holds true when ap-

plied to these closest neighbors. Such a situation is 

illustrated by Fig. 4. 

 

 

Fig. 4: Multiple crossings on the both sides 

 

7 USING COMPLEMENTARY SENSITIVITY 

Similar formulae can be derived the peak value of 

complementary sensitivity  

 
( )

( )
1 ( )

L s
T s

L s



 (1.13) 

Comparing definitions (1.1) and (1.13), it is easy to 

see that  

  
1

( ) 1
1 1 1

L
T L S L

L L
  

 
 (1.14) 

So one can simply repeat all the derivations above, 

replacing ( )S s
 
by ( )T s  and, at the same time, ex-

changing the Nyquist plot of ( )L s
 
by the Nyquist 

plot of its reciprocal function 1 ( )L s . Such a way, it 

can be proved that  

 max

1
1

T

GM
M

   (1.15) 
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Here, as usually, 
TM  stands for the peek value of the 

complementary sensitivity function or for its H
 

norm  

sup ( ) ( )TM T j T s





 
 

 

The inequality (1.15) is encountered in textbooks as 

often as (1.6). However, it again holds true only for 

1GM  . In the opposite case of 1GM  , the inequa-

lity (1.15) must be replaced by is "opposite counter-

part"  

 
min

1
1

T

GM
M

   (1.16) 

 

Finally, for the case of "two-sided crossing", a two-

sided margin applies similarly to (1.10) giving rise to 

the "complementary version" of (1.12), which is  

 
1 1

1 1
T T

k
M M

     (1.17) 

 

8 EXAMPLES 

Example 1:  

To prove that standard inequalities (1.6) and (1.15) 

indeed fail in the opposite case, just consider a trivial 

unstable open-loop transfer function  

 
2

( )
1

L s
s




 (1.18) 

with Nyquist plot on Fig 5. The drawing reveals that  

 

 
Fig. 5: The Nyquist plot of (1.18) 

 

the negative axis crossing appears to be on the left of 

the critical point while min 1 2GM GM  . The cor-

responding closed-loop sensitivity and complementa-

ry sensitivity functions are show on Fig 6 from which 

it is clear that 1SM   and 2TM  . It is easy to 

check that both (1.6) and (1.15) fail 

1

2
GM  

1

1

2

S

S

M

M

GM

 


 
1 3

1
2TM

 

 

while (1.9) and (1.16) do hold  

 

min

min

1 1

2 1 2

1 1 1
1

2 2

S

S

T

M
GM

M

GM
M

  


   

 

This result in fact justifies of the current paper.  

 

 

Fig. 6: Sensitivity and complementary sensitivity  

related to (1.18) 

 

Example 2:  

The case of two-sided crossing can be demonstrated 

by another quite elementary unstable open-loop trans-

fer function 

 
2

( )
2 1

s
L s

s





 (1.19) 

Its Nyquist plot on Fig 6 indeed crosses the negative 

real axis twice and this happens on the right as well 

as on the left of (-1,0) giving rise to two-sided margin 

with 
min 1 2GM   and max 2GM  . As 2SM    

 

  

Fig. 7: The Nyquist plot of (1.19) 

 

and 2TM  (see Fig. 8), we can apply (1.12) to learn 

that the closed-loop system remains stable even if the 
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open-loop transfer function is multiplied by a factor 

k  such that  

 
1

2
1 2 1

S S

S S

M M
k

M M
   

 
. 

Alternatively, we can employ (1.17) to conclude that 

it remains stable for any multiplicative factor  k  such 

that  

 
1 1 1 3

1 1
2 2T T

k
M M

       

Note that a narrower interval for k  results by chance 

when using 
TM  in this example. 

 

 

Fig. 8: Sensitivity and complementary sensitivity  

related to (1.19) 

 

Example 3:  

We end the section with example of a multiple nega-

tive real axis crossing. Nyquist plot of a complicated 

open loop transfer function 

 
 

 

2

2

3

3

( 0.5403 0.17.9555 2
( )

2

252)

(1 4.9511 7.3022)

s s

s

s
L s

ss

 


 


 

has been plotted by Matlab as follows 

 

 

Fig. 9: Multiple crossing of the negative real axis 

 

It crosses negative real axis six times: there times on 

the left and three times on the right of the critical 

point. To find the two-sided gain margin, only one 

crossing point should be considered on each side. 

9 HOW CAN WE BENEFIT FROM ALL THE 

INEQUALITIES? 

At first, (Skogestad et al. 2005) proposed using the 

peaks 
SM  or 

TM  to replace traditional measures for 

design specifications GM (and PM). For instance, 

requiring  2SM   implies requiring  
max 2GM   (by 

(1.6)) and 30PM   (by another formula not dis-

cussed here). Thank to the development above, we 

can tweak this claim by adding that requiring 2SM   

implies requiring 
min 2 3GM   as well (by (1.9)). 

Hence by specifying 
SM  one guarantees resulting 

robust stability gain interval to be at least (1.12), i.e.  

 
1 1

S S

S S

M M
k

M M
 

 
 

This interval may be narrower than the classical  

 min maxGM k GM   

In reward, it is more lucid as it is using one variable 

SM  only. In addition, it is easier to handle and guar-

antee by modern loop-shaping techniques. 

As another outcome, the above discussion sheds more 

light on the relation between gain margins and sensi-

tivity peaks. Given 
SM (as the design has already 

been made or for other reasons), what does it mean 

for the two-sided gain margin? 

First the inequalities 

 
min

min

1

0 1

S

S

M
GM

M

GM




 

 (1.20) 

imply that 

 min0 1
1

S

S

M
GM

M
  


 (1.21) 

To put it in words, once 
SM  is given, the 

minGM cannot be worse than  1S SM M  . In fact, it 

can only range the interval  

  0, 1S SM M     (1.22) 

where the left bound is a dream while the right one is 

the worst case. This, however, tells us nothing about 

where within the interval minGM  is actually located. 

This evidently depends on other properties of the 

sensitivity function rather than just on its peak. 

To have an idea, look at the following plot on Fig 10. 
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Fig 10: Dependence of the upper bound of 
minGM  

on the sensitivity peak 
SM  

For example, 1SM   implies  min 0,1 2GM  . This 

means that 
minGM  cannot be worse than 1/2, but can 

be better, perhaps even 0.  As another example, take a 

larger 2SM  . This results in a larger interval 

 min 0,2 3GM   allowing 
minGM  to rang up to 2 3 , 

that is larger and hence worse than before. 

To summarize, for a given 
SM , the inequality  

 min
1

S

S

M
GM

M



 (1.23) 

provides the worst case bound for 
minGM . 

 

The inequalities  

 max max,1
1

S

S

M
GM GM

M
 


 (1.24) 

can be investigated similarly. Just consider the plot 

on Fig 11, which is a hyperbola with an asymptote at 

1SM  .  

 

Fig 11: Dependence of the lower bound of maxGM  

on the sensitivity peak SM  

 

Since max1 GM by definition and since 1SM   for 

any physical system, only the right branch of the 

hyperbola counts. So for  1,SM    is always 

  ,1
1

S

S

M

M
 


 

Here again (1.24) provide the worst case for 
maxGM , 

this time the lower bound. For a given  1,SM   , 

maxGM cannot be worse (lower) than  1S SM M   . 

Then it must range  

   1 ,S SM M    (1.25) 

For example, if 1SM  , then even the lower bound 

reaches ∞ and 
maxGM  is fixed to be 

maxGM   . For 

a rising 
SM , the lower bound becomes smaller. It 

falls down to 1 for large 
SM  until the interval (1.25)  

blows up to the definition interval  

  max 1,GM    

and thereby, in fact, loses its purpose. 

10 PEAK SENSITIVITY AND NONLINEAR 

ACTUATOR 

Yet another benefit from the inequalities developed 

above is that they help to explain the impact of even-

tual actuator nonlinearity. Thanks to them, one can 

apply the Circle criterion for stability of nonlinear 

systems, as we show in this section. 

 

 

Fig 12: The circle definitely avoided by Nyquist plot 

 

Regardless of where and how many times it crosses 

the negative real axis, the open-loop Nyquist plot 

never gets inside the circle around the critical point 

with radius 1 SM . This is guaranteed by the very 

definition of SM  and illustrated on Fig 12.  

Assuming that the closed loop is stable, we are sure 

that the open-loop Nyquist plot encircles the critical 

point properly as many times as the Nyquist stability 

criterion requires. Then, however, it properly encir-

cles the whole circle as well. This enable us to apply 

the Circle criterion for stability of nonlinear systems, 
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see e.g.  (Glad at al. 2001). Next, the criterion re-

quires to find conditions that the nonlinearity must 

satisfy. They naturally depend on the position and 

circle size. To this end, we calculate points where the 

circle crosses the negative real axis. To be consistent 

with nonlinear control textbooks, we denote A, the 

left crossing point, by 1  and B, the right crossing 

point, by 1  . Then it is clear from Fig 12 that 

 
1 1

1
SM

       and  
1 1

1
SM

     (1.26) 

yielding 

 
1

S

S

M

M
 


   and   

1

S

S

M

M
 


 (1.27) 

This brings our favorite inequalities into the game. 

Before stating the final result of this section, let us 

remind what was proven so far. We already know that 

if the closed loop is stable, then it remains stable even 

if the open-loop transfer function ( )L j  is replaced 

by ( )kL j  with k  such that by (1.12) 

 
1 1

S S

S S

M M
k

M M
 

 
 (1.28) 

Now, using the Circle criterion (Glad at al. 2001) we 

claim even more. If the closed loop is stable, the it 

remains (globally asymptotically) stable even if we 

insert into the loop a nonlinearity ( )f x  such that 

(0) 0f   and that for any 0x   satisfies 

 
( )

1 1

S S

S S

M Mf x

M x M
 

 
 (1.29) 

The geometric meaning of (1.29) is clear from Fig 13 

 
 

Fig 13: Nonlinearity and its bounds 

The nonlinearity graph is confined to a cone shape 

region bound by two straight lines passing through 

the origin and having slopes 

 ,
1 1

S S

S S

M M

M M
  

 
. 

respectively. The smaller is the sensitivity peak, the 

more spacious is the region and the more complex 

nonlinearity fits. It is then less likely that a nonlinear 

actuator violates overall stability. 

11 "DO NOT ENTER" CIRCLE 

As a byproduct, we win even better geometrical in-

sight. It is crystal clear form Fig 14 what happens 

when applying the inequalities. In fact, we just trade 

the original interval given by the points where ( )L j  

crosses negative real axis for another interval defined 

by the points where the circle crosses negative real 

axis. The new interval may be smaller, but it is nicer,  

 

Fig 14: The final picture 

 

easier to express and design. However, its main ad-

vantage is that not only the negative real axis segment 

is untouched by ( )L j but the whole circle is intact. 

This is important as it guarantees true robust stability, 

regardless whether gain, phase or both are uncertain.  

 

 

Fig 15: High sensitivity peak 

Example 4:  

Consider first the case of a high sensitivity peak as on 

Fig 15 where two different open-loop transfer func-

tions are plotted having the same closed-loop sensi-
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tivity peak 
SM . As the peak is high, the "do not en-

ter" circle is small and the stability robustness is 

poor. Note that although 
1( )L j  offers much larger 

gain margin than 
2 ( )L j (indeed

max,1 max,2GM GM ) 

the same lower bound  1S SM M   results from 

(1.6) leading to exactly the same new interval (1.25) 

or  (1.11). Here one could wrongly conclude that 

more is lost for 
1( )L j  than for 

2 ( )L j . However, 

just the reverse is true: Robustness is evenly poor for 

1( )L j  and for 
2 ( )L j and the larger gain margin 

max,1GM  really means nothing. The correct explana-

tion for the difference is simply that the gain margin 

max,1GM  is a shoddy measure to evaluate the closed-

loop stability robustness for 
1( )L j . 

Example 5:  

For change, consider now a perfect design with the 

smallest reasonable peak 1SM  , for instance an 

LQR design for a double integrator that results in 

 
2

1 1
( )

.4
L s

s

s


  (1.30) 

plotted on Fig 16. As 1SM  , the "do not enter" cir-

cle is large enough to touch the origin. In such a case,  

 

 

Fig 16: Low sensitivity peak 

 

the inequalities (1.9) and (1.6) reveal good robustness 

with  

min max

1
,

2
GM GM    

Since physical systems do not transfer infinitely high 

frequencies, their open-loop Nyquist plot always ends 

in the origin.  Hence the "do not enter" circle can 

never cross the imaginary axis and the sensitivity 

peak SM  never drops below 1 for a physical system. 

Example 6:  

For a non-physical system or a reduced model or 

alike, it may well happen that 1SM  . For instance 

 
2

2 1
( )

s

s
L s




  (1.31) 

gives rise to 2 3SM   and the "do not enter" circle 

becomes even larger having 1 3 2SM   in diameter. 

This is illustrated on the following Fig. 17. 

 

Fig 17: Sensitivity peak less than one 

 

When the circle goes beyond ten imaginary axis, 

however, gain margin would be negative. This would 

require modifying the definitions. We postpone this 

to another paper and finish the exposition right here. 
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