

Department of Biochemical and Chemical Engineering Process Dynamics and Operations Group (DYN)

Online optimizing control: The link between plant economics and process control

Sebastian Engell

Process Dynamics and Operations Group Department of Biochemical and Chemical Engineering Technische Universität Dortmund Dortmund, Germany

Introduction

The gap between process operations and controller design

technische universität dortmund

Process operations

RefluxSplit Acetic Acid Top Product GT1T2T6T5T10T9T3T7T11T4T8T12X $\left| \right\rangle$ Heat supply Minimize! Minimize! Maximize! Constrained uncertain kinetics

Coolant

Reactive distillation column

technische universität dortmund

Online optimizing control: The link between plant economics and process control

Coolant

Control engineering

Standard task description:

Choose and design feedback controllers for optimal

- disturbance rejection
- setpoint tracking

for a given "plant" (i.e. inputs, outputs, dynamics, disturbances, references, model errors, limitations, …)

"SERVO or REGULATION PROBLEM"

Control engineering reduction

technische universität dortmund

- In process control, the servo problem formulation is adequate for subordinate tasks:
	- •Temperature control
	- Flow control
	- •…
- Optimal solution of servo/regulation problems does not imply optimal plant operation – optimal plant operation is not necessarily a servo problem!
- F Automatic (feedback) control is often considered as a necessary low level function but not as critical for economic success.

\Rightarrow CONTROL FOR OPTIMAL PLANT OPERATION

Outline: From control to optimal operation

- \checkmark The gap between process control and process operations
- •**Control structure selection**
- •Real-time optimization
- •From RTO to optimizing control
- •Direct finite-horizon optimizing control
- •Application example: SMB Chromatography
- •Plant-model mismatch
- •Summary, open issues and future work

Control structure selection

- Choice of manipulated and controlled variables
	- \bullet Which variables should be controlled?
	- \bullet Which manipulated variables should be used?
	- \bullet Loop pairing (not considered here)
- Common methods:
	- \bullet Linear analysis: RGA, condition numbers, sensitivities, Jorge Trierweiler's RPN, optimization
	- •Simulation studies

Focus is on dynamics – methods address the servo problem but not optimal plant operation.

Plant performance-based control structure selection

- Skogestad (2000): "Self-optimizing control"
- Basic ideas:
	- •Tracking of set-points is not always advantageous
	- • Feedback control should guarantee cost effective operation in the presence of disturbances and plant-model mismatch
	- •Stationary analysis (dynamics ignored)
	- • Non-linear plant behavior considered by use of rigorous nonlinear plant models

Plant performance-based control structure selection

 $\overline{}$ Decision based on the effect of regulation on the profit **J**

Comparison of feedback structures

- F Feedback restricts the controlled variables to an interval around the set-points (due to measurement errors)
- F Computation of the worst-case profit for possible control structures and several disturbance scenarios (guaranteed plant performance)

$$
\min_{\underline{u}} J(\underline{u}, \underline{d}_i, \underline{x})
$$
\n
$$
s.t. : \underline{\dot{x}} = \underline{f}(\underline{u}, \underline{d}_i, \underline{x}) = 0
$$
\n
$$
\underline{y} = \underline{m}(\underline{x}) = \underline{M}(\underline{u}, \underline{d}_i)
$$
\n
$$
\underline{y}_{set} - \underline{e}_{sensor} < \underline{y} < \underline{y}_{set} + \underline{e}_{sensor}
$$

F Set-points optimized separately for a set of disturbances

Two-layer architecture with RTO

technische universität dortmund

From control to optimal operation

- \checkmark The gap between process control and process operations
- \checkmark Control structure selection
- \checkmark Real-time optimization
- •**From RTO to optimizing control**
- •Direct finite-horizon optimizing control
- •Application example
- •Summary, open issues and future work

From RTO to optimizing control

- \mathbb{R}^3 Simple idea: (strict) RTO is too slow ... hence
- \mathbb{R}^3 Do not wait for steady state \rightarrow *fast sampling RTO*
	- • Current industrial practice: Sampling times of 10-30 mins instead of 4-8 hours \Rightarrow dynamic control without concern for dynamics
	- Stability enhanced by restricting the size of changes
	- \bullet Similar to gain scheduling control: Dynamic plant state is projected on a stationary point
	- •Ad-hoc solution

Integration of performance optimization in MPC

- $\overline{\mathcal{A}}$ Idea:
	- • Add a term that represents the economic cost (or profit) to a standard (range control) MPC cost criterion
	- \bullet Zanin, Tvrzska de Gouvea and Odloak (2000, 2002):

$$
\min_{\Delta u(k+i); i=0,\dots,m-1} \sum_{j=1}^{p} \left\|W_1(y(k+j)-r)\right\|_2^2
$$

+
$$
\sum_{i=0}^{m-1} \left\|W_2 \Delta u(k+i)\right\|_2^2 + W_3 f_{eco} (u(k+m-1))
$$

+
$$
\left\|W_5(u(k+m-1)-u(k-1)-\Delta u(k))\right\|_2^2
$$

+
$$
W_6[f_{eco}(u(k+m-1), y(k+\infty))
$$

-
$$
f_{eco}(u(k), y'(k+\infty))^2
$$

Application to a real industrial FCC

7/6 inputs, 6 outputs Economic criterion: LPG-production

Problems: Acceptance by operators Concerns for vulnerability

(1) *W3*=100, (2) *W3*=1, (3) *W3*=0.1

technische universität dortmund

From control to optimal operations

- \checkmark The gap between process control and process operations
- \checkmark Control structure selection
- \checkmark Real-time optimization
- \checkmark From RTO to optimizing control
- •**Direct finite-horizon optimizing control**
- \bullet Application example
- •Plant-model mismatch
- •Summary, open issues, and future work

Direct Finite Horizon Optimizing Control

- \blacksquare Idea:
	- • Optimize - over a finite moving horizon - the (main) degrees of freedom of the plant with respect to process performance rather than tracking performance
	- Represent the relevant constraints for plant operation as constraints in the optimisation problem and not as setpoints
	- \bullet Quality requirements are also formulated as constraints and not as fixed setpoints
- \Rightarrow Maximum freedom for economic optimization

Direct Finite Horizon Optimizing Control

- $\mathcal{L}_{\mathcal{A}}$ Advantages:
	- •Degrees of freedom are fully used.
	- •One-sided constraints are not mapped to setpoints.
	- •No artificial constraints (setpoints) are introduced.
	- • No waiting for the plant to reach a steady state is required, hence fast reaction to disturbances.
	- \bullet Non-standard control problems can be addressed.
	- • No inconsistency arises from the use of different models on different layers.
	- \bullet Economic goals and process constraints do not have to be mapped to a control cost whereby inevitably economic optimality is lost and tuning becomes difficult.
	- •The overall scheme is structurally simple.

Application study: SMB chromatography

technische universität dortmund

Chromatography: Principle, batch process

- • Separation is based on different adsorption affinities of the components to a fixed adsorbent.
- \bullet Gradual separation while the mixture is moving through the column
- Fractionating of the products at the column outlet

☺ Simple process, high flexibility

 \odot High operating costs, high dilution of the products, and low productivity

technische universität dortmund

Simulated-Moving-Bed process

- A number of chromatographic columns are connected in series
- The inlet and outlet ports move to the next column position after each swichting period $(τ)$
- • Quasi-countercurrent operation is achieved ("simulated") by cyclic port switching
- ☺ Continuous operation, higher productivity, and lower separation cost
- \odot Complex dynamics, very slow reaction to changes

SMB dynamics

technische universität dortmund

SMB concentration profiles

- $\overline{\mathbb{R}^n}$ Continuous flows and discrete switchings
- $\overline{}$ Axial profile builds up during start-up
- \mathbb{R}^2 Same profile in different columns in **cyclic** steady state
- \Rightarrow Periodic output concentrations

SMB optimization and control problem

- **Goal:** Maintain specified purity at minimal operating cost
- Periodic process described by switched pde's
- Strongly nonlinear behaviour especially for nonlinear adsorption isotherms
- Drifts may lead to breakthrough of the separation fronts \rightarrow long periods of off-spec production
- $\mathcal{L}_{\mathcal{A}}$ Intuitive determination of a near-optimal operating point is difficult.
- Optimal operation is at the purity limit.
- Operating cost is caused by solvent consumption and the cost of the adsorbent per (gram of) product
- Ö **Minimization of the solvent flow rate while meeting the specs for purity and recovery**

Hierarchical control scheme (Klatt et al.)

technische universität dortmund

Stabilizing the concentration profile

- Front positions taken as controlled variables
- Choice of manipulated variables: β-factors
- \Rightarrow Decoupled influence on the zones of the SMB process
- \mathbb{R}^2 Successful application to process with linear isotherm

Problems of the hierarchical approach

- \mathbb{R}^3 Extension to nonlinear isotherms possible but control scheme quite complex (NN-based LPV MPC) (Wang and Engell, 2003)
- \mathbb{R}^3 Fronts can only be detected accurately in the recycle stream, not in the product streams
- $\mathcal{L}_{\mathcal{A}}$ Optimality and desired purities cannot be guaranteed by front position control if the model has structural errors, e.g. in the form of the isotherm.
	- \rightarrow additional purity control layer necessary
	- \rightarrow scheme becomes very complex, optimality is lost.
- > Use **economic** online optimization directly to control the plant (Toumi and Engell, Chem. Eng. Sci., 2004)

Formulation of the online optimization problem

$$
\min \sum_{j=k+1}^{k+H_p} (\Theta(j) + \Delta \beta_j^T R_j \Delta \beta_j)
$$
\n
$$
[\beta_k, \beta_{k+1}, ..., \beta_{k+H_r}]
$$
\n
$$
\beta
$$

$$
\begin{cases}\n x_{k+1,0} = Mx_k \\
\dot{x} = f(x, u, p) \\
y = h(x, u)\n\end{cases}
$$

s.t. $j = k, ..., k + H_{p}$ $\Delta p_{j} \leq \Delta p_{\max}$ $Ex, j \in \mathbb{R}$ k ^{+ H}_p $j = k+1$ $Ex, j \in \mathbb{R}$ *w* $Ex = I \ w \ Ex$ k ^{+ H}_p $j = k+1$ $\sum Rec_{Ex,j} + \Delta Rec_{Ex} \geq Rec$ $\sum Pur_{Ex,j} + \Delta Pur_{Ex} \geq Pur_{Ex,\min}$ Θ: economic criterion: solvent consumption

 $_{\sf k}$ degrees of freedom – transformed flow rates and switching time

Rigorous hybrid process model

Purity requirements (with error feedback, log. scaled)

Recovery (with error feedback)

max. pressure loss

technische universität dortmund

Reactive SMB processes

- $\overline{}$ Integration of reaction and separation can overcome equilibria and reduce energy and solvent consumption
- Fully integrated process however is severely restricted
- $\overline{\mathbb{R}}$ Hashimoto SMB-process:
	- •Reaction and separation are performed in separate columns
	- •Reactors remain fixed in the loop at optimal locations
	- • Optimal conditions for reaction and separation can be chosenrecycle

• Disadvantage: complex valve shifting for simulated movement of reactors

technische universität dortmund

Racemization of Tröger's Base (TB): Profiles

technische universität dortmund

Simulation of the optimizing controller

- \mathbb{R}^n Purity and recovery constraints enforced
- $\overline{}$ Plant/model mismatch $(H_A + 10\%, H_B - 5\%)$
- $\mathcal{L}^{\mathcal{A}}$ Controller reduces thesolvent consumption
- $\overline{}$ Satisfaction of process requirements

Experimental Hashimoto SMB reactor

technische universität dortmund

Experimental results

because of a pump failure

technische universität dortmund

Conclusion from the case study

- \mathbb{R}^3 Direct optimizing control is feasible!
- \mathbb{R}^2 Numerical aspects:
	- • General-purpose NLP algorithms for dynamic problems provide sufficient speed for slow processes (Biegler et al., Bock et al.)
	- Special algorithms taylored to online control for short response times $(\sim s)$ (Bock, Diehl et al.)

\mathbb{R}^2 **Main advantages**

- Performance
- • Clear, transparent and natural formulation of the problem, few tuning parameters, no interaction of different layers

τ **But there is a problem ...**

technische universität dortmund

technische universität dortmund

NMPC and model accuracy

- The idea of (N)MPC is to solve a forward optimization problem repeatedly
- Quality of the solution depends on the model accuracy
- T. Feedback only enters by re-initialization and error correction (disturbance estimation) term
- \mathbb{R}^n Model errors are usually taken into account by a constant extrapolation of the error betweenprediction and observation

Plant-model mismatch for Hashimoto SMB

Modification of the cost function

technische universität dortmund

Modification of the cost function

How to include robustness in optimizing control?

- Improve the quality of the model by parameter estimation
	- Numerical effort
	- •Insufficient exitation during nominal operation
	- •Structural plant-model mismatch
- \mathbb{R}^n Worst-case optimization for different models
	- •Conservative approach, loss of performance
	- •Does not reflect the existence of feedback
- **Two-stage optimization!**

Two-stage decision problem

- Information and decision structure
	- •First stage decisions $\mathbf{x} \neq \mathbf{f}(\omega)$ (here and now)
	- \bullet Second stage decisions **y** ⁼ **f**(ω) (recourse)

technische universität dortmund

Two-stage formulation

$$
\min_{\substack{u_k \cdots u_{k+N_p-1} \\ u_k^{*b} \cdots u_{k+N_p-1}^*}} J_k = \min \left(\phi \left(y_{k+N_p|k} \right) + \sum_{j=0}^{N_p-1} \ell \left(y_{k+j|k}, u_{k+j|k} \right) \right)
$$
\n
$$
u_{k}^{*b} \cdots u_{k+N_p-1}^{*b} = 1, \dots, N_p \qquad b = 1, \dots, B
$$
\n
$$
y_{k+j} \in \mathcal{Y}
$$
\n
$$
u_{k+j-1} \in \mathcal{U}
$$
\n
$$
\Delta u_{k+j-1} \in \Delta \mathcal{U}
$$
\n
$$
0 = y_{k+j} - f \left(\theta, y_{k+j-1}, \dots, y_{k+j-1}, \dots \right)
$$
\n
$$
y_{k}^{*b} \in \mathcal{Y}
$$
\n
$$
u_{k+j-1}^{*b} \in \mathcal{U}
$$
\n
$$
\Delta u_{k+j-1}^{*b} \in \Delta \mathcal{U}
$$
\n
$$
0 = y_{k+j}^{*b} - f \left(\theta^{*b}, y_{k+j-1}^{*b}, \dots, y_{k+j-1}^{*b}, \dots \right)
$$
\n
$$
0 = u_{k+j} - u_{k+j}^{*b} \qquad i = 0, \dots, N'_u
$$
\n
$$
y_{k+N_p} \in W \oplus \mathcal{W}(\alpha)
$$

From control to optimal operations

- \checkmark The gap between process control and process operations
- \checkmark Control structure selection
- \checkmark Real-time optimization
- \checkmark En route from RTO to dynamic optimization
- \checkmark Direct finite-horizon optimizing control
- \checkmark Application example
- \checkmark Plant-model mismatch
- •**Summary, open issues, and future work**

Summary

 The goal of process control is not set-point tracking but optimal performance!

direct finite horizon optimizing control

- $\mathcal{L}_{\mathcal{A}}$ **Main advantages***:*
	- Performance
	- • Clear, transparent and natural formulation of the problem, few tuning parameters, no interaction of different layers
- Feasible in real applications but requires engineering
- Numerically tractable due to advances in nonlinear dynamic optimization (Biegler et al., Bock et al.)
- Modelling and model accuracy are critical issues.
- F Two-stage formulation leads to a uniform formulation of uncertainty-conscious online scheduling and control problems.

Open issues

\blacksquare **Modelling**

- •Dynamic models are expensive
- • Training simulators are often available, but models too complex
- • Grey box models, rigorous stationary nonlinear plus blackbox linear dynamic models?
- **F** State estimation
	- •MHE formulations natural but computationally demanding
- $\mathcal{L}_{\mathcal{A}}$ **Stability**
	- • Economic cost function may not be suitable to ensure stability

More research topics

- \mathcal{L}^{max} Measurement-based optimization
- Constraint handling in case of infeasibility
- $\overline{}$ Integration of discrete degrees of freedom
- $\mathcal{C}^{\mathcal{A}}$ System archictecures – decentralization, coordination
- $\mathcal{L}_{\mathcal{A}}$ **Issues for real implementations:**
	- •Operator interface
	- •Plausibility checks, safety net
	- •Reduction of complexity – à la NCO tracking?
- \mathcal{L}^{max} References

S. Engell, Feedback control for optimal process operation,*Journal of Process Control* 17 (2007), 203-219.

S. Engell, T. Scharf, and M. Völker: A Methodology for Control Structure Selection Based on Rigorous Process Models. 16th IFAC World Congress, Prague, 2005, Paper Code Tu-E14-TO/6

The Team

\mathbf{r} **Control Structure Selection:**

Tobias Scharf

\blacksquare **SMB**:

Karsten-Ulrich Klatt, Guido Dünnebier, Felix Hanisch, Chaoyong Wang, Abdelaziz Toumi, Achim Küpper

$\mathcal{L}_{\mathcal{A}}$ **NMPC with multiple (NN) models:** Kai Dadhe

Thanks to

- T. The Plant and Process Design Group of TU Dortmund for the joint work on SMB modeling, optimization, and control
- $\mathcal{L}_{\mathcal{A}}$ Our partners at IWR Heidelberg (Georg Bock, Moritz Diehl, Johannes Schlöder, Andreas Potschka, Sebastian Sager)
- $\mathcal{L}_{\mathcal{A}}$ Prof. Darci Odloak for the information on the FCC case
- T. The DFG for sponsoring our research in the context of the research clusters "Integrated Reaction-Separation Processes" and "Optimization-based control of chemical processes"
- **... and to you for your kind attention!**

