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Abstract: The design of a motion controller for a mobile robot can be a very difficult
and tedious task, especially for robots with a complex kinematic structure. Even
though several types of motion controllers have been proposed in literature, they are
not always applicable on car-like mobile robots equipped with conventional steering
wheels. The reason is, that it is generally not possible to derive an inverse kinematic
model for such robots. In this paper, a self-tuning intelligent controller for a quasi-
omnidirectional mobile robot is presented. The controller is used to control the robot
following a desired trajectory. It is implemented as a neuro-fuzzy controller, which
can adapt its parameters by a self-learning process in such manner, that the mobile
robot can follow a desired trajectory with required accuracy and speed. The process
of tuning controller parameters tuning is demonstrated on experiments with a quasi-
omnidirectional mobile robot F.A.A.K.

Keywords: mobile robot control, trajectory following, neuro-fuzzy controller, hybrid
learning

1. INTRODUCTION

A precise motion control is a primary assumption
for succesful application of every mobile robot.
In the past years, various control design meth-
ods have been developed for this purpose. The
situation is relatively easy for mobile robots with
simple kinematic structure (e.g. with two differ-
ential driven wheels), or for robots without non-
holonomic constraints, respectively. If their in-
verse kinematic model exits, it can be used to
calculate the position and speed of every joint in
the kinematic chain from the speed of the robot
body. Therefore, a motion of the robot along a
trajectory can be computed offline as a sequence
of motions of robot joints and links. In an ideal
case, after applying of these partial motions, the
robot would move as required. However, there
are external forces acting on the robot during its
movement (driving, centrifugal, friction, Coriolis

and gravitational forces), that must be compen-
sated to follow the desired trajectory with high
precision. For this purpose, the kinematic or dy-
namic model of the robot is used depending on
requested precision of trajectory following. For
simple applications, the kinematic model is usu-
ally preferred. The dynamic model of the robot is
the base for a high precision motion control, but it
is considerably more complicated than kinematic
model. Various model-based control systems for
mobile robots can be found in de Wit et al. (1996),
Muir (1988).

However, the problem with implementation of a
model-based control arises if the inverse kinematic
model of the robot does not exist. Such situation
occurs by every car-like mobile robot, i.e. if there
are more wheels on a common axis or at least
one steering wheel with the steering axis going
through the contact point of the wheel with the
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floor. An example of a conventional steering wheel
is depicted in Fig. 1.
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Fig. 1. Conventional steering wheel

Motion of the robot body consists of two transla-
tion (in X- and Y -axis) and one rotation (about
Z-axis). It can be expressed in the robot body
coordinate system B as

ṗB =




vBx

vBy

ωBz


 = J.q = J




ωW

ωC

ωS


 , (1)

whereby ωW is a wheel rotational speed about
X-axis (driving speed of the wheel), ωC is a
rotational speed of the wheel about Z-axis in the
contact point with the floor and ωS is a rotational
speed about the steering axis. The matrix J is
called a wheel Jacobian and in the case, that the
steering axis of the steered wheel goes through the
contact point with the floor, it is defined as follows

J =



−R sin(γ) dy −dy

−R cos(γ) −dx dx

0 1 −1


 , (2)

whereby R is a wheel radius and dx, dy are
distances of the wheel steering axis from the robot
midpoint.

It is obvious, that the matrix J is singular and
therefore it is not possible to directly derive the
inverse kinematic model of the robot. A conven-
tional steering wheel has less degrees of freedom
than input variables and therefore it is redundant.
Hence, the model-based control using the inverse
kinematic model is not applicable on the mobile
robots equiped with conventional steering wheels.

For this reason, we have developed a neuro-fuzzy
controller which can be used for trajectory follow-
ing for car-like mobile robots with non-holonomic
constraints. Before describing the controller func-
tionality, a mobile robot used for verification of
proposed solution will be briefly introduced.

2. QUASI-OMNIDIRECTIONAL MOBILE
ROBOT F.A.A.K.

The quasi-omnidirectional mobile robot F.A.A.K.
(Fig. 2) was developed on our department as

an experimental platform for testing of advanced
control and navigation strategies Masr and Gerke
(2004). Even though it is a small-size robot, it
is equipped with external sensorics, visual system
and enough processing power to implement ad-
vanced control strategies to able to operate fully
autonomous in various environments.

Fig. 2. Mobile robot F.A.A.K.

The robot is built on a non-conventional chassis
with four steered wheels, whereas two of them
are driven. Such kinematics allows performing of
various types of motion, depending on performed
task and actual situation in robot environment.
Thereby it is possible to change not only the
radius, but also the instantaneous centre of robot
rotation ICR (Fig. 3(a), Fig. 3(b)) and thus to
turn the curves with very small radius. Moreover,
the robot can cruise (Fig. 3(c)), move laterally
(Fig. 3(d)) or rotate about its vertical axis (Fig.
3(e)), respectively.

By using of these motion types, the robot can
overcame the constraints caused by the non-
holonomic couplings and thus it is able to move
in any direction with an arbitrary orientation.
Therefore, the robot can move quasi-omnidirectional.
Such quasi-omnidirectional movement concept is
very advantagenaous for robotic applications in
artificial environments with many obstacles like
households, offices, hospitals etc. Namely, thanks
to posibility to re-configure its kinematic struc-
ture, the robot can manoeuvre on a very limited
space.

3. TRAJECTORY FOLLOWING PROBLEM

The problem of trajectory following by a mobile
robot is showed in Fig. 4. In the figure, a sim-
plified kinematic model of the F.A.A.K. robot is
used. This simplification can be applied under as-
sumption, that the steering wheels are controlled
using Ackerman steering principle, i.e. that all
perpendicular wheel axis intersect in an ICR at
any time. If this condition is fulfilled, the steering
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Fig. 3. Motion types of F.A.A.K. mobile robot

wheels on a common axle can be replaced by
a virtual wheel in the middle of this particular
(front or rear) axle. The real robot wheels are then
controlled according to Ackermann principle men-
tioned above. By introducing of virtual steering
wheels, the forward kinematic model of the robot
can be reduced significantly. The control variables
are then the steering angles γ1, γ2 of the virtual
wheels and angular velocity of the rear steering
wheel ω2.

The position of the robot body is defined in global
floor coordinate system F as

pF =
[
px py θz

]T (3)
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Fig. 4. Line following problem

The trajectory following error eL is measured as
the perpendicular distance of the robot midpoint
to the trajectory, which is implemented using
cubic splines. The control objective is to follow
the trajectory with required forward speed and
with minimal trajectory following error.

4. NEURO-FUZZY CONTROLLER

As mentioned above, it is not possible to derive an
inverse kinematic model for this kind of mobile
robots and therefore to compute the steering
angles and driving speeds of the wheels directly
from the desired trajectory. For this reason, we
developed a neuro-fuzzy controller to solve the
trajectory following problem.

The main idea of the presented neuro-fuzzy con-
troller is based on a fact, that it is possible to
control the mobile robot following a predefined
trajectory by a simple PD-controller under cer-
tain conditions. Such PD-controller controls the
steering angles of the steering wheels γ1, γ2 depen-
dent on the actual distance from the trajectory.
However, this controller works properly only for
a specific forward speed of the robot and for a
limited maximal distance from the trajectory.

To control the robot over its entire operating
range, several PD-controller could be designed.
Every controller would be optimized for specific
working point defined by a forward speed of the
robot. Moreover, an additional logic would have
to switch among PD-controllers according to the
actual operating point. Nevertheless, such type of
controller switching causes well-known problems,
like ejecting of control signal discontinuities and
oscillations on the border between two working
points, eventually instability of the control loop.
Moreover, the design of controller parameters for
various operating points is not an easy task and
requires many trials.
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Therefore, we fused several PD-controllers with
switching logic to a fuzzy logic controller (FLC),
which changes the parameters of the PD-controller
continuously according to actual conditions. The
rule base of the controller contains the decision
rules in the form (here as an example for the
control of the front steering wheel):

ri : Wenn eL ist Ei und ω2 ist Ωi dann (4)

γ1i ist Pi eL + Di ėL, i = 1, . . . , N, (5)

where eL, ėL and ω2 are input variables; Ei and
Ωi are linguistic values of the input variables
eL and ω2, respectively, used in the i-th rule.
Output function implements a PD-controller with
parameters Pi and Di using trajectory following
error eL and its time change ėL. Hence, the fuzzy
controller is based on Takagi-Sugeno inference
system.

The crisp output value of the control signal is
computed by singleton method. For the steering
angle γ1 of the front wheel, the output is comupted
from local outputs of the N rules described above
using the formula:

γ1 =

N∑
i=1

γ1i(eL, ėL)µi(eL, ω2)

N∑
i=1

µi(eL, ω2)
, (6)

where µi is the weight of the i-th rule. The control
signal is thus computed as a weighted average
from several PD-controllers and hence without
discontinuities. The fuzzy rules for the steering
angle of the rear wheel γ2 and its angular speed
ω2 are implemented in an analogous manner.

Fuzzy controller with inference systems described
above can be easily implemented as a structured
neural network. Main advantage of such imple-
mentation is the possibility to optimize its para-
meters (i.e. the values of proportional and deriva-
tive gain of the PD-controllers and the parameters
of the input/output fuzzy sets) by some adapta-
tion procedure. Moreover, the parameters can be
continuously adapted during robot movement by
means of on-line training methods and available
input-output data.

Trajectory
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Calculating trajectory
following error
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Fig. 5. Control-loop with fuzzy controller

The structure of the closed control loop with
neuro-fuzzy controller for trajectory follwing is
shown in Fig. 5. The proposed controller has two
inputs - trajectory following error eL(k) and its
one time-delayed sample eL(k − 1) to compute
the time change of the distance from the tra-
jectory. Trajectory following error eL(k) is either
computed from the actual robot position pF (k)
and predefined trajectory coordinates dL(k) or di-
rectly measured by line camera, which is mounted
underneath of the robot. The outputs are steering
angles γ1(k) and γ2(k) for both front and rear
steering axes and the maximum forward speed of
the rear wheel ω2(k).

The tuning of controller parameters uses back-
propagation learning and takes place in two steps.

4.1 Step I - Training of dynamical model of the
system

In the first phase, the dynamical model of the mo-
bile robot following a predefined trajectory must
be trained. This model is required for backprop-
agating of the trajectory error to the controller
during an adaptation of its parameters. Because
it is very difficult (if not impossible) to derive
this model analytically in the form of differential
equations and then backpropagate control error
through it, we used multi-layer neural network in-
stead. The inputs to this network are two steering
angles γ1(k), γ2(k), angular velocity of the driving
wheel ω2(k) and last distance of the robot from
the trajectory eL(k − 1) plus one delayed sample
of every input variable in order to build the model
dynamic, i.e. γ1(k − 1), γ2(k − 1), ω2(k − 1) and
eL(k− 2). Output of the network is the estimated
distance from the trajectory ẽL(k−1). The struc-
ture of proposed neural network is given in Fig.
6.

For learning of neural network based model of the
robot, sufficient amount of training data (coordi-
nates of the trajectory, robot position error, ro-
bot forward speed, etc.) must be recorded. Three
methods of training data acquisition can be used:

• Manual steering of the mobile robot
along the desired path. In this data ac-
quisition mode, the line camera is used to
measure the distance from the trajectory.
The trajectory is represented by a contrast
line draw on the floor (e.g. black line on the
white floor). The mobile robot is teleoperated
from MATLAB in this mode.

• Manual steering of the simulation model
of the robot. In principle it is the same
method of data acquisition as the previous
one, but instead of the real robot, robot
simulation in a 3D environment running in
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Fig. 6. Neural network for modelling of the tra-
jectory following robot

MATLAB/Simulink is used. The main ad-
vantage of this method is the possibility to
control the mobile robot also with a greater
distance to the trajectory, because the dis-
tance is not limited by measuring range of
the line camera. Moreover, the motion of the
robot can be viewed by simulation from vari-
ous viewpoints, including ”through the robot
camera lens” perspective, and the simulation
can be stopped if the robot goes away from
the trajectory or moves in wrong direction.

• Autonomous ride of the robot con-
trolled by a PD-controller. As mentioned
above, in certain circumstances it is possible
to follow a trajectory by mobile robot using
a simple PD-controller. The conditions for
trajectory following are limited by forward
speed of the robot and maximal distance
from the trajectory. Therefore, the training
data sets can be recorded also during real or
simulated ride of the robot controlled by the
PD-controller as long as it moves along the
trajectory.

After collecting of sufficient amount of train-
ing data, the neural network implementing robot
model can be trained. For this purpose, hybrid
learning Jang et al. (1997) is very suitable be-
cause of its fast convergence and computational
effort. This type of learning combines an adap-
tation of non-linear parameters of the system by
the Levenberg-Marquardt algorithm according to
equation

ΘNNew = ΘNOld
− [JTJ+λI]−1JT (eL− ẽL), (7)

and the estimation of its linear parameters using
LSE-method

ΘNBest = (ATA)−1AT eL, (8)

where ΘNNew and ΘNOld
are the vectors of the

actual and the last adapted parameters, respec-
tively. J is the Jacobian of the system, A is a
matrix of activation functions of neurons from the
Layer 1, eL is a vector of output errors andΘNBest

are new parameters of the activation functions of
neurons from the Layer 1.

Because the learning of this neural network is a
computational consumptive process, it is usually
done off-line. Learning of the neural network is
depicted in Fig. 7.
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Fig. 7. Training of the feedforward neural network
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ing of the neural network based robot model

4.2 Step II - Training of the neuro-fuzzy controller

In the second step, the parameters of the neuro-
fuzzy controller are adapted so that the mobile
robot is able to follow the desired trajectory with
specified tracking error and with arbitrary for-
ward speed. For the purpose of learning, a neuro-
fuzzy controller is implemented using a structured
neural network. In this network, each layer repre-
sents a part of the Takagi-Sugeno fuzzy inference
system.

The control loop with neuro-fuzzy controller dur-
ing self-learning is depicted in Fig. 7.
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The learning of the neuro-fuzzy controller can be
realized again using simulations or by experiments
with the real robot. However, the robot simulation
is the preferred way, because it can accelerate
the learning process, Moreover, the problems that
can occur by experimentation with the real robot
controlled by a not well-tuned neuro-fuzzy con-
troller can be avoided. In such case, the robot
must be always stopped to prevent possible colli-
sions. Afterward the learning can be started again,
but the training process is delayed. Good results
can be achieved by combining of simulations and
real experiments. In such case, the parameters of
the controller are adapted using simulations first.
Thereafter, they are fine-tuned using experiments
with the real robot.

The adaptation algorithm is based as before on
Levenberg-Marquardt concept. As the measure
for parameter adaptation, the sum of squared
distances from the trajectory is used. Experiments
have shown that it is not necessary to adjust the
parameters of input fuzzy sets of the neuro-fuzzy
controller, but only parameters of output func-
tions, i.e. the gain values of the PD-controllers.

5. EXPERIMENT REULTS

In the following graphs, the results of two exper-
iments are presented. During experiment 1, the
robot tries to find a straight line and follow it.
During experiment 2, the robot follows a curved
trajectory. The situations at the beginning of ex-
periments are showed in Fig. 10.

(a) Experiment 1 (b) Experiment 2

Fig. 10. Start positions

In Fig. 11, trajectory distances from both experi-
ments before and after learning are compared. At
the beginning, a fuzzy controller with trial-and-
error designed output function is used.
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Fig. 11. Trajectory following error

After several training steps, the trajecotry follow-
ing error was reduced rapidly, particulary in the
first experiment, where the robot has run on the
trajectory very quickly and was able to follow
it with very small tracking error. In the second
experiment, the error was also reduced, but the
robot was not able to follow the line with higher
precision because of its dynamic constraints. How-
ever, the experiments have prooved the feasibil-
ity of the proposed neuro-fuzzy controller for the
given application.

6. CONCLUSION

In this paper, the problem of motion control of
non-holonomic mobile robots have been analyzed.
Because of the absence of their inverse kinematic
model, the classical model-based control methods
are not applicable. As a solution we have de-
veloped an intelligent neuro-fuzzy controller for
the trajectory following. The controller is able to
adapt its parameters by self-learning, therefore
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the inverse kinematic or dynamic model of the
robot are not required by its design. Moreover,
the parameters can be adapted also on-line during
robot movement or off-line in some regular inter-
vals, respectively. After learning phase, the mobile
robot was capable to follow the desired trajectory
with expected precision in any circumstance.

The proposed controller has been tested on the
experimental quasi-omnidirectional mobile robot
F.A.A.K. The simulation and experiment results
have approved, that the designed neuro-fuzzy mo-
tion control concept is very suitable for the consid-
ered class of non-holonomic mobile robots because
of its simple design and implementation.
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June 9–12, 2009, Štrbské Pleso, Slovakia Le-Fr-5, 112.pdf

653


