
Hybrid Systems Seminar
Complexity Reduction in Explicit MPC

Michal Kvasnica

Thursday, April 15, 2010

Do not go where the path may lead,
go instead where there is no path

and leave a trail.

Ralph Waldo Emerson

Thursday, April 15, 2010

Model Predictive Control

Plant

u∗ = f(x)
plant statecontrol action

Given a performance index JN =
N−1∑

k=0

uT
k Ruk + xT

k Qxk

Compute control action in acceptable timeu∗ = f(x)

u∗ = arg min JN

Plant model
Constraints

Thursday, April 15, 2010

Model Predictive Control

x1 = Ax0 + Bu0

x2 = Ax1 + Bu1

= A2x0 + ABu0 + Bu1

x3 = Ax2 + Bu2

= A3x0 + A2Bu0 + ABu1 + Bu2

...

min
U=[u0,...,uN−1]

N−1∑

k=0

uT
k Ruk + xT

k Qxk

s.t. xk ∈ X
uk ∈ U
xk+1 = f(xk, uk)

min
U

1
2UT HU

s.t. GU ≤W + Sx0

Parameters
(initial condition)

Thursday, April 15, 2010

On-Line MPC

plant statecontrol action

Plant

min
U

1
2UT HU

s.t. GU ≤W + Sx0

Thursday, April 15, 2010

On-Line MPC

Optimal performance 

Constraints 

Fast implementation 

Thursday, April 15, 2010

Typical Implementation Platforms

10 000 MFLOPS/sec 1 MFLOPS/sec
more than 2 GB less than 8 kB

100 MFLOPS/sec
more than 128 MB

Thursday, April 15, 2010

Explicit MPC

min
U

1
2UT HU

s.t. GU ≤W + Sx0

plant statecontrol action

Plant

Off-line

On-line
Explicit Solution

(=Look-Up Table)u∗(x)

x

Thursday, April 15, 2010

Explicit MPC: Solution Properties

x

U∗(x) (K2, L2)
(K1, L1)

(K3, L3) (K4, L4)
(K5, L5)

(K6, L6)

A1x ≤ b1

A2x ≤ b2
A3x ≤ b3

A4x ≤ b4
A5x ≤ b5

A6x ≤ b6

• State space is divided into polytopic regions

• Affine control law in each region

Thursday, April 15, 2010

Explicit MPC: On-Line Implementation

x

U∗(x)

A1x ≤ b1

A2x ≤ b2
A3x ≤ b3

A4x ≤ b4
A5x ≤ b5

A6x ≤ b6

• Identify region which contains current state (99.9% of effort)

• Evaluate the corresponding affine feedback law (0.1% effort)

x0

U∗ = K3x0 + L3

Thursday, April 15, 2010

Explicit MPC: Pros and Cons

PROs:
− easy to implement
− “fast” on-line evaluation
− analysis of implementation issues possible

CONs:
− number of controller regions can be large
− no control over the construction of the solution
− computation scales badly

 Controller complexity is the crucial issue!

Thursday, April 15, 2010

Complexity in Numbers

1000 regions x 100 bytes each to store

1000 regions x 10 FLOPS each to evaluate

✔ ✔ ?

Thursday, April 15, 2010

Three Levers of Complexity Reduction

Controller
Construction

Solution Complexity

Control
Evaluation

PLANT

control u* state x

output y

1 2

3

Thursday, April 15, 2010

Three Levers of Complexity Reduction

Controller
Construction

Solution Complexity

Control
Evaluation

PLANT

control u* state x

output y

1 2

3

Thursday, April 15, 2010

Lever 1: Controller Construction

• Observation:
- complex problem formulations usual lead to complex controllers

• Idea:
- use simpler objectives and hope for simpler solutions

• Questions to be answered:
- is the idea justified?
- if yes, can significant reduction of complexity be achieved?
- how to simplify the MPC problem and not to loose important

properties?

Thursday, April 15, 2010

Classical Formulation

min
N−1∑

k=0

!(xk, uk)

s.t. xk+1 = f(xk, uk)
xk ∈ X , uk ∈ U
xk+N ∈ T

PROs:

• optimal performance

• constraint satisfaction

• closed-loop stability

CON:

• complex solution Why?

Thursday, April 15, 2010

Dynamic Programming

• Solve a series of horizon-one problems backwards in time:

min
uk

!(xk, uk) + !f (xk+1)

s.t. xk+1 = f(xk, uk)
xk ∈ X , uk ∈ U
xk+1 ∈ Xk+1

Add cost-to-go

End up in the
previous iteration

Terminal set
Cost-to-go=0

Thursday, April 15, 2010

Dynamic Programming

• Solve a series of horizon-one problems backwards in time:

min
uk

!(xk, uk) + !f (xk+1)

s.t. xk+1 = f(xk, uk)
xk ∈ X , uk ∈ U
xk+1 ∈ Xk+1

Add cost-to-go

End up in the
previous iteration

All states that can be
pushed to the

terminal set in 1 step

Thursday, April 15, 2010

Dynamic Programming

• Solve a series of horizon-one problems backwards in time:

min
uk

!(xk, uk) + !f (xk+1)

s.t. xk+1 = f(xk, uk)
xk ∈ X , uk ∈ U
xk+1 ∈ Xk+1

Add cost-to-go

End up in the
previous iteration

In each region we
have a unique

expression of the cost

Thursday, April 15, 2010

Dynamic Programming

• Solve a series of horizon-one problems backwards in time:

min
uk

!(xk, uk) + !f (xk+1)

s.t. xk+1 = f(xk, uk)
xk ∈ X , uk ∈ U
xk+1 ∈ Xk+1

Add cost-to-go

End up in the
previous iteration

For each region of the terminal
set and each associated cost-to-

go solve a 1-step problem
Thursday, April 15, 2010

Dynamic Programming

• Solve a series of horizon-one problems backwards in time:

min
uk

!(xk, uk) + !f (xk+1)

s.t. xk+1 = f(xk, uk)
xk ∈ X , uk ∈ U
xk+1 ∈ Xk+1

Add cost-to-go

End up in the
previous iteration

Combined solution

Thursday, April 15, 2010

Dynamic Programming

• Solve a series of horizon-one problems backwards in time:

min
uk

!(xk, uk) + !f (xk+1)

s.t. xk+1 = f(xk, uk)
xk ∈ X , uk ∈ U
xk+1 ∈ Xk+1

Add cost-to-go

End up in the
previous iteration

For each region of the terminal
set and each associated cost-to-

go solve a 1-step problem
Thursday, April 15, 2010

Dynamic Programming

• Solve a series of horizon-one problems backwards in time:

min
uk

!(xk, uk) + !f (xk+1)

s.t. xk+1 = f(xk, uk)
xk ∈ X , uk ∈ U
xk+1 ∈ Xk+1

Add cost-to-go

End up in the
previous iteration

Final solution

N=3 N=2 N=1

Thursday, April 15, 2010

Dynamic Programming Summary

• Solve a series of horizon-one problems backwards in time:

• Reason for complexity:
- need to solve as many problems as there are regions defining the

cost-to-go function

min
uk

!(xk, uk) + !f (xk+1)

s.t. xk+1 = f(xk, uk)
xk ∈ X , uk ∈ U
xk+1 ∈ Xk+1

Add cost-to-go

End up in the
previous iteration

Thursday, April 15, 2010

Classical Formulation

min
N−1∑

k=0

!(xk, uk)

s.t. xk+1 = f(xk, uk)
xk ∈ X , uk ∈ U
xk+N ∈ T

PROs:

• optimal performance

• constraint satisfaction

• closed-loop stability

CON:

• complex solution

Trade performance for complexity

Thursday, April 15, 2010

Minimum-Time Formulation

Possible applications:

• fast vibration suppression

• fast engine startup

• fast disturbance rejection

min N

s.t. xk+1 = f(xk, uk)
xk ∈ X , uk ∈ U
xk+N ∈ T

PROs:

• simpler solution

• constraint satisfaction

• closed-loop stability

CON:

• suboptimal performance

Thursday, April 15, 2010

Minimum-Time Controller Construction

• Solve a series of horizon-one problems backwards in time:

• Why is it a simpler formulation:
- cost-to-go is constant (number of steps needed to reach the origin)
- consequence: only need to consider a single terminal set at each step

min
uk

!(xk, uk) + !f (xk+1)

s.t. xk+1 = f(xk, uk)
xk ∈ X , uk ∈ U
xk+1 ∈ Xk+1

Thursday, April 15, 2010

Minimum-Time Controller Construction

• Design an invariant set around the origin

XI

Thursday, April 15, 2010

Minimum-Time Controller Construction

Partition 1

• Solve N=1 problem with as the terminal set
• Store , its regions and the associated feedback laws

XI

X1

X1

Thursday, April 15, 2010

• Solve N=1 problem with as the terminal set
• Store , its regions and the associated feedback laws

Minimum-Time Controller Construction

Partition 2

X1

X1

X2

X2

Thursday, April 15, 2010

Minimum-Time Controller Construction

Partition 3

• Repeat until convergence...

Thursday, April 15, 2010

Minimum-Time Controller Construction

Partition 4

• Repeat until convergence...

Thursday, April 15, 2010

Minimum-Time Controller Construction

Partition 5

• Repeat until convergence...

Thursday, April 15, 2010

Minimum-Time Controller Construction

Convergence if

• Repeat until convergence...

Xk = Xk−1

Thursday, April 15, 2010

Minimum-Time Controller

• Resulting controller is composed of all partitions!

Thursday, April 15, 2010

Minimum-Time Controller Implementation

#0

#1

#2
#4
#5

XI

x0

All partitions

Partition #:

• All partitions on top of each other

Thursday, April 15, 2010

Minimum-Time Controller Implementation

x0

• Pick the partition which contains measurements and has the
least cost-to-go

X0

X1

X2

X3

X4

Thursday, April 15, 2010

Minimum-Time Controller Implementation

x0

Partition 2

• Identify the region which contains measurements
• Evaluate the corresponding feedback law

Thursday, April 15, 2010

Minimum-Time Controller Implementation

x1

Partition 1

• By construction the state is pushed to a “lower” partition

Thursday, April 15, 2010

Minimum-Time Controller Properties

min N

s.t. xk+1 = f(xk, uk)
xk ∈ X , uk ∈ U
xk+N ∈ T

PROs:

• simpler solution

• constraint satisfaction

• closed-loop stability

CON:

• suboptimal performance

How much simpler?

How much do we loose?

Indeed?

Thursday, April 15, 2010

Minimum-Time Controller Properties

• Feasibility guaranteed by solving constrained problems
• Stability guaranteed by construction:

Cost (number of steps
needed to reach the

terminal set) is always
decreasing

Thursday, April 15, 2010

Minimum-Time Controller Complexity

0
100
200
300
400
500
600
700
800
900

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 R

eg
io

ns

Random System

Dynamic Programming
Minimum-Time

0

1.25

2.5

3.75

5

1 2 3 4 5 6 7 8 9 10

R
eg

io
n

R
ed

uc
tio

n
Fa

ct
or

Random System

Thursday, April 15, 2010

Minimum-Time Controller Complexity

0

25

50

75

100

125

150

175

200

1 2 3 4 5 6 7 8 9 10

R
un

tim
e

R
ed

uc
tio

n
Fa

ct
or

Random System

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10

C
on

st
ru

ct
io

n
R

un
tim

e
[s

]

Random System

Dynamic Programming
Minimum-Time

Thursday, April 15, 2010

Minimum-Time Controller Performance

0

2.5

5

7.5

10

12.5

15

1 2 3 4 5 6 7 8 9 10A
ve

ra
ge

 P
er

fo
rm

an
ce

 D
ro

p
[%

]

Random System

Thursday, April 15, 2010

Minimum-Time Control: Summary

PROs:
− faster controller construction
− lower number of regions
− acceptable loss of performance on average

CON:
− bang-bang behavior

Thursday, April 15, 2010

Extensions of Minimum-Time Control

PWA systems

PWA systems with additive noise

PWA systems with parametric uncertainties

xk+1 = Aixk + Biuk + fi IF xk ∈ Di

xk+1 = Ai(λ)xk + Biuk + fi + w IF xk ∈ Di, ∀w ∈ W

xk+1 = Ai(λ)xk + Biuk + fi IF xk ∈ Di, ∀λ ∈ Λ

Grieder, Kvasnica, Baotic, Morari; Automatica 2005

Rakovic, Grieder, Kvasnica, Mayne, Morari; CDC 2004

Kvasnica, Herceg, Čirka, Fikar; CDC 2010

Thursday, April 15, 2010

Three Levers of Complexity Reduction

Controller
Construction

Solution Complexity

Control
Evaluation

PLANT

control u* state x

output y

1 2

3

Thursday, April 15, 2010

Lever 2: Solution Complexity

• Observation:
- many of the controller regions share the same feedback law

• Idea:
- merge such regions into larger convex objects

x1

x2

u∗(x)

Thursday, April 15, 2010

Typical Explicit MPC Feedback Law

x1

x2

x1

x2

Thursday, April 15, 2010

Lever 2: Solution Complexity

• Observation:
- many of the controller regions share the same feedback law

• Idea:
- merge such regions into larger convex objects

• Questions to be answered:
- can we merge optimally?
- can we merge quickly?
- can we go even further and eliminate all regions?

Thursday, April 15, 2010

Optimal Region Merging

252 regions 39 regions

Geyer, Torrisi, Morari; Automatica 2008

x1

x2

x1

x2

Thursday, April 15, 2010

Step 1: Hyperplane Arrangement4.3 Disjoint Optimal Complexity Reduction 63

+ + + !

+ + + +

+ + ! !

+ ! ! !

! ! ! !
! + + +

! ! + +! ! ! +

+ ! ! +

+ + ! +

1

2
3

4

Figure 4.1: Example with four hyperplanes in R = 2 and the corresponding markings.

The polyhedra corresponding to Mw are white and the polyhedra correspond-

ing to M ′
b are grey shaded, respectively

Algorithm 4.1

function Mm = Merge(Mw, M ′
b, z, z̄)

m = env(Mw)

Mb = {mb ∈ M ′
b | Pmb

⊆ Pm}

if Mw = ∅ then Mm = ∅

elseif Mb = ∅ then Mm = m

else

I = {i | m(i) = ’∗’}

Mm = ∅

for i ∈ I

if z < z̄ then

Mm1 = Merge (Mw|m(i)=− , Mb|m(i)=− , z, z̄)

Mm2 = Merge (Mw|m(i)=+ , Mb|m(i)=+ , z + #Mm1 , z̄)

if Mm = ∅ or #Mm1 + #Mm2 < #Mm then

Mm = Mm1 ∪ Mm2

z̄ = min(z̄, z + #Mm)

return Mm

Example 4.1 As an example with four hyperplanes in a two-dimensional space consider

Fig. 4.1. The envelope of the white polyhedra is given by the positive half space of

H4 and the marking m = ∗∗∗+. Thus, only the black polyhedra with markings Mb =

{+−−+, ++−+} are considered, and branching is only performed on the hyperplanes in

Thursday, April 15, 2010

Step 2: Associate Boolean Literals4.3 Disjoint Optimal Complexity Reduction 63

+ + + !

+ + + +

+ + ! !

+ ! ! !

! ! ! !
! + + +

! ! + +! ! ! +

+ ! ! +

+ + ! +

1

2
3

4

Figure 4.1: Example with four hyperplanes in R = 2 and the corresponding markings.

The polyhedra corresponding to Mw are white and the polyhedra correspond-

ing to M ′
b are grey shaded, respectively

Algorithm 4.1

function Mm = Merge(Mw, M ′
b, z, z̄)

m = env(Mw)

Mb = {mb ∈ M ′
b | Pmb

⊆ Pm}

if Mw = ∅ then Mm = ∅

elseif Mb = ∅ then Mm = m

else

I = {i | m(i) = ’∗’}

Mm = ∅

for i ∈ I

if z < z̄ then

Mm1 = Merge (Mw|m(i)=− , Mb|m(i)=− , z, z̄)

Mm2 = Merge (Mw|m(i)=+ , Mb|m(i)=+ , z + #Mm1 , z̄)

if Mm = ∅ or #Mm1 + #Mm2 < #Mm then

Mm = Mm1 ∪ Mm2

z̄ = min(z̄, z + #Mm)

return Mm

Example 4.1 As an example with four hyperplanes in a two-dimensional space consider

Fig. 4.1. The envelope of the white polyhedra is given by the positive half space of

H4 and the marking m = ∗∗∗+. Thus, only the black polyhedra with markings Mb =

{+−−+, ++−+} are considered, and branching is only performed on the hyperplanes in

δ1δ2δ3δ4

δ1δ2δ3δ4

δ1δ2δ3δ4

δ1δ2δ3δ4

Thursday, April 15, 2010

Step 3: Represent Regions to Merge by Logic
Functions

4.3 Disjoint Optimal Complexity Reduction 63

+ + + !

+ + + +

+ + ! !

+ ! ! !

! ! ! !
! + + +

! ! + +! ! ! +

+ ! ! +

+ + ! +

1

2
3

4

Figure 4.1: Example with four hyperplanes in R = 2 and the corresponding markings.

The polyhedra corresponding to Mw are white and the polyhedra correspond-

ing to M ′
b are grey shaded, respectively

Algorithm 4.1

function Mm = Merge(Mw, M ′
b, z, z̄)

m = env(Mw)

Mb = {mb ∈ M ′
b | Pmb

⊆ Pm}

if Mw = ∅ then Mm = ∅

elseif Mb = ∅ then Mm = m

else

I = {i | m(i) = ’∗’}

Mm = ∅

for i ∈ I

if z < z̄ then

Mm1 = Merge (Mw|m(i)=− , Mb|m(i)=− , z, z̄)

Mm2 = Merge (Mw|m(i)=+ , Mb|m(i)=+ , z + #Mm1 , z̄)

if Mm = ∅ or #Mm1 + #Mm2 < #Mm then

Mm = Mm1 ∪ Mm2

z̄ = min(z̄, z + #Mm)

return Mm

Example 4.1 As an example with four hyperplanes in a two-dimensional space consider

Fig. 4.1. The envelope of the white polyhedra is given by the positive half space of

H4 and the marking m = ∗∗∗+. Thus, only the black polyhedra with markings Mb =

{+−−+, ++−+} are considered, and branching is only performed on the hyperplanes in

δ1δ2δ3δ4

δ1δ2δ3δ4

δ1δ2δ3δ4

δ1δ2δ3δ4

White regions = δ1δ2δ3δ4 + δ1δ2δ3δ4 + δ1δ2δ3δ4 + δ1δ2δ3δ4

= δ1δ2δ4(δ3 + δ3) + δ2δ3δ4(δ1 + δ1)
= δ1δ2δ4 + δ2δ3δ4

Thursday, April 15, 2010

Step 4: Simplify the Function
4.3 Disjoint Optimal Complexity Reduction 63

+ + + !

+ + + +

+ + ! !

+ ! ! !

! ! ! !
! + + +

! ! + +! ! ! +

+ ! ! +

+ + ! +

1

2
3

4

Figure 4.1: Example with four hyperplanes in R = 2 and the corresponding markings.

The polyhedra corresponding to Mw are white and the polyhedra correspond-

ing to M ′
b are grey shaded, respectively

Algorithm 4.1

function Mm = Merge(Mw, M ′
b, z, z̄)

m = env(Mw)

Mb = {mb ∈ M ′
b | Pmb

⊆ Pm}

if Mw = ∅ then Mm = ∅

elseif Mb = ∅ then Mm = m

else

I = {i | m(i) = ’∗’}

Mm = ∅

for i ∈ I

if z < z̄ then

Mm1 = Merge (Mw|m(i)=− , Mb|m(i)=− , z, z̄)

Mm2 = Merge (Mw|m(i)=+ , Mb|m(i)=+ , z + #Mm1 , z̄)

if Mm = ∅ or #Mm1 + #Mm2 < #Mm then

Mm = Mm1 ∪ Mm2

z̄ = min(z̄, z + #Mm)

return Mm

Example 4.1 As an example with four hyperplanes in a two-dimensional space consider

Fig. 4.1. The envelope of the white polyhedra is given by the positive half space of

H4 and the marking m = ∗∗∗+. Thus, only the black polyhedra with markings Mb =

{+−−+, ++−+} are considered, and branching is only performed on the hyperplanes in

δ1δ2δ3δ4

δ1δ2δ3δ4

δ1δ2δ3δ4

δ1δ2δ3δ4

White regions = δ1δ2δ3δ4 + δ1δ2δ3δ4 + δ1δ2δ3δ4 + δ1δ2δ3δ4

= δ1δ2δ4(δ3 + δ3) + δ2δ3δ4(δ1 + δ1)
= δ1δ2δ4 + δ2δ3δ4

Thursday, April 15, 2010

Step 4: Simplify the Function
4.3 Disjoint Optimal Complexity Reduction 63

+ + + !

+ + + +

+ + ! !

+ ! ! !

! ! ! !
! + + +

! ! + +! ! ! +

+ ! ! +

+ + ! +

1

2
3

4

Figure 4.1: Example with four hyperplanes in R = 2 and the corresponding markings.

The polyhedra corresponding to Mw are white and the polyhedra correspond-

ing to M ′
b are grey shaded, respectively

Algorithm 4.1

function Mm = Merge(Mw, M ′
b, z, z̄)

m = env(Mw)

Mb = {mb ∈ M ′
b | Pmb

⊆ Pm}

if Mw = ∅ then Mm = ∅

elseif Mb = ∅ then Mm = m

else

I = {i | m(i) = ’∗’}

Mm = ∅

for i ∈ I

if z < z̄ then

Mm1 = Merge (Mw|m(i)=− , Mb|m(i)=− , z, z̄)

Mm2 = Merge (Mw|m(i)=+ , Mb|m(i)=+ , z + #Mm1 , z̄)

if Mm = ∅ or #Mm1 + #Mm2 < #Mm then

Mm = Mm1 ∪ Mm2

z̄ = min(z̄, z + #Mm)

return Mm

Example 4.1 As an example with four hyperplanes in a two-dimensional space consider

Fig. 4.1. The envelope of the white polyhedra is given by the positive half space of

H4 and the marking m = ∗∗∗+. Thus, only the black polyhedra with markings Mb =

{+−−+, ++−+} are considered, and branching is only performed on the hyperplanes in

δ1δ2δ3δ4

δ1δ2δ3δ4

δ1δ2δ3δ4

δ1δ2δ3δ4

White regions = δ1δ2δ3δ4 + δ1δ2δ3δ4 + δ1δ2δ3δ4 + δ1δ2δ3δ4

= δ1δ2δ4(δ3 + δ3) + δ2δ3δ4(δ1 + δ1)
= δ1δ2δ4 + δ2δ3δ4

Thursday, April 15, 2010

Step 5: Recover Regions
4.3 Disjoint Optimal Complexity Reduction 63

+ + + !

+ + + +

+ + ! !

+ ! ! !

! ! ! !
! + + +

! ! + +! ! ! +

+ ! ! +

+ + ! +

1

2
3

4

Figure 4.1: Example with four hyperplanes in R = 2 and the corresponding markings.

The polyhedra corresponding to Mw are white and the polyhedra correspond-

ing to M ′
b are grey shaded, respectively

Algorithm 4.1

function Mm = Merge(Mw, M ′
b, z, z̄)

m = env(Mw)

Mb = {mb ∈ M ′
b | Pmb

⊆ Pm}

if Mw = ∅ then Mm = ∅

elseif Mb = ∅ then Mm = m

else

I = {i | m(i) = ’∗’}

Mm = ∅

for i ∈ I

if z < z̄ then

Mm1 = Merge (Mw|m(i)=− , Mb|m(i)=− , z, z̄)

Mm2 = Merge (Mw|m(i)=+ , Mb|m(i)=+ , z + #Mm1 , z̄)

if Mm = ∅ or #Mm1 + #Mm2 < #Mm then

Mm = Mm1 ∪ Mm2

z̄ = min(z̄, z + #Mm)

return Mm

Example 4.1 As an example with four hyperplanes in a two-dimensional space consider

Fig. 4.1. The envelope of the white polyhedra is given by the positive half space of

H4 and the marking m = ∗∗∗+. Thus, only the black polyhedra with markings Mb =

{+−−+, ++−+} are considered, and branching is only performed on the hyperplanes in

δ1δ2δ3δ4

δ1δ2δ3δ4

δ1δ2δ3δ4

δ1δ2δ3δ4

White regions = δ1δ2δ3δ4 + δ1δ2δ3δ4 + δ1δ2δ3δ4 + δ1δ2δ3δ4

= δ1δ2δ4(δ3 + δ3) + δ2δ3δ4(δ1 + δ1)
= δ1δ2δ4 + δ2δ3δ4

Thursday, April 15, 2010

Step 5: Recover Regions
4.3 Disjoint Optimal Complexity Reduction 63

+ + + !

+ + + +

+ + ! !

+ ! ! !

! ! ! !
! + + +

! ! + +! ! ! +

+ ! ! +

+ + ! +

1

2
3

4

Figure 4.1: Example with four hyperplanes in R = 2 and the corresponding markings.

The polyhedra corresponding to Mw are white and the polyhedra correspond-

ing to M ′
b are grey shaded, respectively

Algorithm 4.1

function Mm = Merge(Mw, M ′
b, z, z̄)

m = env(Mw)

Mb = {mb ∈ M ′
b | Pmb

⊆ Pm}

if Mw = ∅ then Mm = ∅

elseif Mb = ∅ then Mm = m

else

I = {i | m(i) = ’∗’}

Mm = ∅

for i ∈ I

if z < z̄ then

Mm1 = Merge (Mw|m(i)=− , Mb|m(i)=− , z, z̄)

Mm2 = Merge (Mw|m(i)=+ , Mb|m(i)=+ , z + #Mm1 , z̄)

if Mm = ∅ or #Mm1 + #Mm2 < #Mm then

Mm = Mm1 ∪ Mm2

z̄ = min(z̄, z + #Mm)

return Mm

Example 4.1 As an example with four hyperplanes in a two-dimensional space consider

Fig. 4.1. The envelope of the white polyhedra is given by the positive half space of

H4 and the marking m = ∗∗∗+. Thus, only the black polyhedra with markings Mb =

{+−−+, ++−+} are considered, and branching is only performed on the hyperplanes in

δ1δ2δ3δ4

δ1δ2δ3δ4

δ1δ2δ3δ4

δ1δ2δ3δ4

White regions = δ1δ2δ3δ4 + δ1δ2δ3δ4 + δ1δ2δ3δ4 + δ1δ2δ3δ4

= δ1δ2δ4(δ3 + δ3) + δ2δ3δ4(δ1 + δ1)
= δ1δ2δ4 + δ2δ3δ4

Thursday, April 15, 2010

Optimal Region Merging: Summary

PROs:
− optimal region merging using logic minimization (ESPRESSO)
− applicable to any type of PWA functions (discontinuous, non-convex

partitions, etc.)
− simplified controller provides the same level of optimality

CONs:
− logic optimization is computationally demanding
− upper bound on possible hyperplane arrangements generated by N

hyperplanes in n dimensions is O(Nn)

Geyer, Torrisi, Morari; Automatica 2008

Thursday, April 15, 2010

Complexity in Numbers

• Illustrative case:
- 200 regions in 2D
- each region, on average, is defined by 5 hyperplanes
- hence we have ~500 unique hyperplanes
- therefore the logic minimization can have up to 5002 terms with 500

variables each
- logic minimization with 250 000 constraints and 500 variables is

difficult

Thursday, April 15, 2010

Lever 2: Solution Complexity

• Observation:
- many of the controller regions share the same feedback law

• Idea:
- merge such regions into larger convex objects

• Questions to be answered:
- can we merge optimally? YES - Optimal Region Merging
- can we merge quickly?
- can we go even further and eliminate all regions?

Kvasnica, Fikar; Submitted to CDC 2010

Thursday, April 15, 2010

Clipping-Based Complexity Reduction

u

u

6 regions

• Two types of regions:
- saturated:
- unsaturated:

R1 R2 R3 R4 R5R6

R1,R5,R6

R2,R3,R4

Thursday, April 15, 2010

Clipping-Based Complexity Reduction

u

u

6 regions

• Idea:
- remove saturated regions
- cover the “holes” by expanding unsaturated regions

R1 R2 R3 R4 R5R6

Thursday, April 15, 2010

Clipping-Based Complexity Reduction

u

u

5 regions

• We have eliminated region

R3 R4 R5R6R̃1

R1

Thursday, April 15, 2010

Clipping-Based Complexity Reduction

u

u

• We have eliminated regions
• Merged controller consists of 3 regions

3 regions

R3R̃1

R5,R6

R̃2

ũ(x)

Thursday, April 15, 2010

Clipping-Based Complexity Reduction

u

u

• Nothing is for free!
• For some states we have

3 regions

R3R̃1 R̃2

ũ(x)

u(x) != ũ(x)

Thursday, April 15, 2010

Clipping-Based Complexity Reduction

u

u

• Nothing is for free!
• For some states we have

3 regions

R3R̃1 R̃2

ũ(x)

u(x) != ũ(x)

u(x) = φ(ũ(x))

Thursday, April 15, 2010

Clipping-Based Complexity Reduction

u

u

• Recover equivalence by using a clipping function:

3 regions

R3R̃1 R̃2

ũ(x)

φ(ũ(x)) = max(min(ũ(x), u), u)

u(x) = φ(ũ(x))

Thursday, April 15, 2010

Clipping-Based Complexity Reduction: Summary

PROs:
− very fast, only involves basic polytopic calculus
− clipping function has complexity
− simplified controller provides the same level of optimality

CONs:
− only provides significant reduction if there are plenty saturated

regions
− doesnʼt simplify unsaturated regions
− directly applicable only to continuous functions

O(1)

Kvasnica, Fikar; Submitted to CDC 2010

Thursday, April 15, 2010

Clipping vs ORM

Saturated
Regions

Unsaturated
Regions

ORM merged merged

Clipping removed kept

Thursday, April 15, 2010

Clipping vs ORM

Random
System

RegionsRegionsRegions Runtime [s]Runtime [s]Random
System Original Clipping ORM Clipping ORM

1 35 5 11 1 3
2 75 9 19 1 49
3 83 53 45 1 55
4 173 17 ✞ 1 ✞

5 221 23 ✞ 1 ✞

6 271 119 ✞ 5 ✞

7 481 33 ✞ 1 ✞

8 547 73 ✞ 3 ✞

9 837 139 ✞ 7 ✞

10 1628 274 ✞ 24 ✞

✞ = exhausted all memory

Thursday, April 15, 2010

Lever 2: Solution Complexity

• Observation:
- many of the controller regions share the same feedback law

• Idea:
- merge such regions into larger convex objects

• Questions to be answered:
- can we merge optimally? YES - Optimal Region Merging
- can we merge quickly? YES - Clipping
- can we go even further and eliminate all regions?

Kvasnica, Christophersen, Herceg, Fikar; IFAC WC 2008
Kvasnica, Lofberg, Herceg, Čirka, Fikar; ACC 2010

Thursday, April 15, 2010

Evaluation of Explicit MPC

x

U∗(x)

A1x ≤ b1

A2x ≤ b2
A3x ≤ b3

A4x ≤ b4
A5x ≤ b5

A6x ≤ b6

• Identify region which contains current state (99.9% of effort)

• Evaluate the corresponding affine feedback law (0.1% effort)

x0

U∗ = K3x0 + L3

Thursday, April 15, 2010

The Idea

• Find an approximate feedback which
- is defined over a single region (hence no region search is required)
- guarantees closed-loop stability & constraint satisfaction
- trades off performance for cost of implementation

x

u∗(x)

ũ(x) = a0 + a1x + · · · + anxn

u(x)

• Polynomial is an ideal candidate (low storage, fast evaluation)

Thursday, April 15, 2010

How to Guarantee Stability & Feasibility?

• Find an approximate feedback which
- is defined over a single region (hence no region search is required)
- guarantees closed-loop stability & constraint satisfaction
- trades off performance for cost of implementation

x

u∗(x)

ũ(x) = a0 + a1x + · · · + anxn

u(x)

• Polynomial is an ideal candidate (low storage, fast evaluation)

Thursday, April 15, 2010

The Idea Continued...

• Given is:
- LTI or PWA system
- explicit MPC feedback with stability guarantees
- PWA Lyapunov function

• Is it the only feedback which gives stability?

Thursday, April 15, 2010

The Idea Continued...

• Given is:
- LTI or PWA system
- explicit MPC feedback with stability guarantees
- PWA Lyapunov function

• Is it the only feedback which gives stability?
• Theorem:

- a set of stabilizing feedbacks exists
- it can be computed
- it is represented by polytopes

• Corollary:
- if the polynomial resides in the set,

stability is guaranteed

Thursday, April 15, 2010

Two Key Questions

• How to find the set of stabilizing controllers?
• How to find coefficients of the polynomial residing in such set?

Thursday, April 15, 2010

Set of Stabilizing Controllers

x

The state space

Thursday, April 15, 2010

Set of Stabilizing Controllers

x

The state space is divided into polyhedral regions

Thursday, April 15, 2010

Set of Stabilizing Controllers

x

J

Over which the PWA Lyapunov function is defined...

Thursday, April 15, 2010

Set of Stabilizing Controllers

Along with the optimal explicit MPC feedback law

x

u

H1x ≤ K1 H2x ≤ K2

Thursday, April 15, 2010

Set of Stabilizing Controllers

x

u

We search for a set of inputs satisfying constraints...

H1x ≤ K1 H2x ≤ K2

Thursday, April 15, 2010

Set of Stabilizing Controllers

x

u

We search for a set of inputs satisfying constraints which
push all states from left region to the right region...

H1x ≤ K1 H2x ≤ K2

Thursday, April 15, 2010

Set of Stabilizing Controllers

x

u

i.e. in the direction of decrease of the Lyapunov function

H1x ≤ K1 H2x ≤ K2

Thursday, April 15, 2010

Set of Stabilizing Controllers

x

u

Two conditions must hold:

H1x ≤ K1 H2x ≤ K2

H2(Ax + Bu) ≤ K2

J(Ax + Bu)− J(x) ≤ −β

Thursday, April 15, 2010

Set of Stabilizing Controllers

x

u

H2(Ax + Bu) ≤ K2

J(Ax + Bu)− J(x) ≤ −β

H2(Ax + Bu) ≤ K2

(M2(Ax + Bu) + L2)− (M1x + L1) ≤ −β
⇒

H1x ≤ K1 H2x ≤ K2

Thursday, April 15, 2010

Set of Stabilizing Controllers

x

u

H2(Ax + Bu) ≤ K2

(M2(Ax + Bu) + L2)− (M1x + L1) ≤ −β

H1x ≤ K1 H2x ≤ K2

But these are all linear constraints!

Thursday, April 15, 2010

Set of Stabilizing Controllers

x

u

H1x ≤ K1 H2x ≤ K2

H2(Ax + Bu) ≤ K2

(M2(Ax + Bu) + L2)− (M1x + L1) ≤ −β
Hence they define a polytope
in the x-u space!

Thursday, April 15, 2010

Set of Stabilizing Controllers

• The whole set is obtained by exploring all feasible transitions
• This is not the set of all stabilizing controllers!
• Merely it is a set of inputs which render a given PWA Lyapunov

function a Control Lyapunov function

Thursday, April 15, 2010

Finding the Polynomial

• Objectives:
- the polynomial must never leave the set
- it should be close to the optimal feedback

• Tuning parameter: degree of the polynomial

Thursday, April 15, 2010

Finding the Polynomial

• Fix the degree of
• Search for the coefficients:

ũ(x) = a0 + a1x + · · · + anxn

find a1, . . . , an

s.t Ti − Si

[
x

ũ(x)

]
≥ 0, i = 1, . . . , N

∀x ∈ {x | Ki −Hix ≥ 0}, i = 1, . . . , N

Thursday, April 15, 2010

Finding the Polynomial

• Fix the degree of
• Search for the coefficients:

• The problem boils down to showing global positivity of
polynomials:
- positivstellensatz & SDP
- Polya theorem & LP

ũ(x) = a0 + a1x + · · · + anxn

find a1, . . . , an

s.t Ti − Si

[
x

ũ(x)

]
≥ 0, i = 1, . . . , N

∀x ∈ {x | Ki −Hix ≥ 0}, i = 1, . . . , N

Kvasnica, Lofberg, Herceg, Čirka, Fikar; ACC 2010

Kvasnica, Christophersen, Herceg, Fikar; IFAC 2008

Thursday, April 15, 2010

Polynomial Approximation: Summary

PROs:
− eliminates all regions altogether
− very fast evaluation
− extremely low memory footprint of the controller (< 20 bytes)
− guarantees closed-loop stability & constraint satisfaction

CONs:
− heavy computational demand (feasible for < 200 regions)
− controller is suboptimal (however performance drop can be bounded)
− SDP & LP relaxations are just sufficient conditions

Thursday, April 15, 2010

Lever 2: Solution Complexity

• Observation:
- many of the controller regions share the same feedback law

• Idea:
- merge such regions into larger convex objects

• Questions to be answered:
- can we merge optimally? YES - Optimal Region Merging
- can we merge quickly? YES - Clipping
- can we go even further and eliminate all regions?

 YES - Polynomial Approximation

Thursday, April 15, 2010

Three Levers of Complexity Reduction

Controller
Construction

Control
Evaluation

PLANT

control u* state x

output y

1

3

Solution Complexity
2

Thursday, April 15, 2010

Sequential Search

x
A1x ≤ b1

A2x ≤ b2
A3x ≤ b3

A4x ≤ b4
A5x ≤ b5

A6x ≤ b6

x0

? ? ?
u∗(x)

• Works out-of-the box
• Can be easily implemented using any language (C, JAVA, LAD, ...)

Thursday, April 15, 2010

Lever 3: Control Evaluation

• Fact:
- sequential search always works, but has complexity

• Objective:
- devise faster evaluation scheme, ideally with

• Questions to be answered:
- is it possible?
- how expensive is construction of such schemes?
- can we construct them with less effort?

O(N)

O(log2 N)

Thursday, April 15, 2010

Complexity in Numbers

10 Hz

100 Hz

1,000 Hz

10,000 Hz

100,000 Hz

10 100 1000 10000

Number of regions

O(N) search (1 MFLOP/s)

Thursday, April 15, 2010

Complexity in Numbers

10 Hz

100 Hz

1,000 Hz

10,000 Hz

100,000 Hz

10 100 1000 10000

Number of regions

O(N) search (1 MFLOP/s) O(log2(N)) search (1 MFLOP/s)

Thursday, April 15, 2010

Binary Search Trees

x

x0

A

Tondel et al., Automatica 2003

u∗(x)

Thursday, April 15, 2010

Binary Search Trees

x0

Tondel et al., Automatica 2003

u∗(x)

x
A

Thursday, April 15, 2010

Binary Search Trees

x0

Tondel et al., Automatica 2003

u∗(x)

x
A B

Thursday, April 15, 2010

Binary Search Trees

x0

Tondel et al., Automatica 2003

u∗(x)

x
A B

Thursday, April 15, 2010

Binary Search Trees

x0

Tondel et al., Automatica 2003

u∗(x)

x
A BC

Thursday, April 15, 2010

Binary Search Trees

x0

Tondel et al., Automatica 2003

u∗(x)

x
A BC

Thursday, April 15, 2010

Binary Search Trees

• How to find optimal branching hyperplanes?
• How to organize them into a tree?
• Easy in 1D, what about higher dimensions?

A

B

C D

E

F

Thursday, April 15, 2010

2D Example

Thursday, April 15, 2010

2D Example

Thursday, April 15, 2010

2D Example

Thursday, April 15, 2010

2D Example

Thursday, April 15, 2010

2D Example

Thursday, April 15, 2010

2D Example

Thursday, April 15, 2010

2D Example

Thursday, April 15, 2010

2D Example

Thursday, April 15, 2010

2D Example

Thursday, April 15, 2010

2D Example

Thursday, April 15, 2010

Binary Search Tree: Construction

Thursday, April 15, 2010

Binary Search Tree: Construction

• Step 1: determine positions of regions wrt. all hyperplanes

A

Hyperplane Regions left Regions right
A 1, 2 3, 4, 5

Thursday, April 15, 2010

Binary Search Tree: Construction

• Step 1: determine positions of regions wrt. all hyperplanes

Hyperplane Regions left Regions right
A 1, 2 3, 4, 5
B 1, 2, 4 2, 3, 5

B

Thursday, April 15, 2010

Binary Search Tree: Construction

• Step 1: determine positions of regions wrt. all hyperplanes

Hyperplane Regions left Regions right
A 1, 2 3, 4, 5
B 1, 2, 4 2, 3, 5
C 1, 4 2, 3, 4, 5

C

Thursday, April 15, 2010

Binary Search Tree: Construction

• Step 1: determine positions of regions wrt. all hyperplanes

Hyperplane Regions left Regions right
A 1, 2 3, 4, 5
B 1, 2, 4 2, 3, 5
C 1, 4 2, 3, 4, 5
D 1, 2, 3, 4 4, 5

D

Thursday, April 15, 2010

Binary Search Tree: Construction

• Step 2: find best hyperplane which divides regions into ~halves

Hyperplane Regions left Regions right
A 1, 2 3, 4, 5
B 1, 2, 4 2, 3, 5
C 1, 4 2, 3, 4, 5
D 1, 2, 3, 4 4, 5

B

D

AC

Thursday, April 15, 2010

Binary Search Tree: Construction

• Step 3: proceed recursively on left and right branches

D

AC B

B

A

2 D

A

C 4

1 2 3 5

Thursday, April 15, 2010

Binary Search Tree: Summary

PRO:
− region identification in time on average

CONs:
− expensive construction (requires linear programs)
− tree can be unbalanced, in the worst case complexity is

O(log2 N)

O(N)
N2

Thursday, April 15, 2010

Complexity in Numbers

Sequential Search Binary Search

LPs 5‧106

Construction time 3 hours

Evaluation FLOPS 100 000 110

2568 regions in 3D

Thursday, April 15, 2010

Complexity in Numbers

Sequential Search Binary Search

LPs 4‧109

Construction time > 16 days

Evaluation FLOPS 1 500 000 ???

22 286 regions in 5D

Thursday, April 15, 2010

Lever 3: Control Evaluation

• Fact:
- sequential search always works, but has complexity

• Objective:
- devise faster evaluation scheme, ideally with

• Questions to be answered:
- is it possible? YES - Binary Search Tree
- how expensive is construction of such schemes? O(N2)
- can we construct them with less effort?

O(N)

O(log2 N)

Thursday, April 15, 2010

Bounding-Box Search Tree

• Idea:
- approximate all regions by boxes
- construct a binary search tree on these simpler structures

• Advantage:
- faster tree construction (only 2N linear programs)

• Problem:
- since the regions have different shapes, the tree only identifies a list of

candidates
- need to sequentially search through this list

Christophersen, Kvasnica, Jones, Morari; ECC 2007

Thursday, April 15, 2010

Thursday, April 15, 2010

Bounding-Box Search Tree: Summary

PROs:
− very cheap construction even for large partitions
− arbitrary partitions can be processed (e.g. with holes)
− good average performance

CONs:
− local search still necessary
− worst-case evaluation drops to
− needs to store all regions as well as all bounding boxes

O(N)

Thursday, April 15, 2010

Bounding-Box Search Tree: Summary

PROs:
− very cheap construction even for large partitions (how cheap?)
− arbitrary partitions can be processed (e.g. with holes)
− good average performance (close to Binary Search Tree?)

CONs:
− local search still necessary (how expensive?)
− worst-case evaluation drops to
− needs to store all regions as well as all bounding boxes

O(N)

Thursday, April 15, 2010

Complexity in Numbers

Sequential Search Binary Search Box Search

LPs 5‧106

Construction time 3 hours

Evaluation FLOPS 100 000 110

2568 regions in 3D

Thursday, April 15, 2010

Complexity in Numbers

Sequential Search Binary Search Box Search

LPs 5‧106 8‧103

Construction time 3 hours 10 secs

Evaluation FLOPS 100 000 110 923

2568 regions in 3D

Thursday, April 15, 2010

Cardinality of List of Candidates

2568 regions in 3D

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

of regions to check

Re
la

tiv
e

oc
cu

rre
nc

e
[%

]

Thursday, April 15, 2010

Complexity in Numbers

Sequential Search Binary Search Box Search

LPs 4‧109 2‧105

Construction time > 16 days 1 minute

Evaluation FLOPS 1 500 000 ??? 200 000

22 286 regions in 5D

Thursday, April 15, 2010

Cardinality of List of Candidates

22 286 regions in 5D

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

of regions to check

re
la

tiv
e

oc
cu

re
nc

e
[%

]

Thursday, April 15, 2010

Lever 3: Control Evaluation

• Fact:
- sequential search always works, but has complexity

• Objective:
- devise faster evaluation scheme, ideally with

• Questions to be answered:
- is it possible? YES - Binary Search Tree
- how expensive is construction of such schemes? O(N2)
- can we construct them with less effort? YES - Bounding-Box Tree

O(N)

O(log2 N)

Thursday, April 15, 2010

Open Possibilities

Michal Kvasnica

Thursday, April 15, 2010

Explicit MPC

• #1 issue: once calculated, the controller is “set in stone”
- penalty matrices stay constant
- prediction model cannot adapt to updated values of parameters

• Challenges:
- how to incorporate a tuning knob, i.e. to parameterize the solution not

only in states, but also in penalties?
- adaptive explicit MPC

Thursday, April 15, 2010

Controller Construction

• Field to look at: control theory
• Possible directions:

- move blocking
- model reduction
- minimum-time controller essentially approximates the objective

function by a piecewise constant function. Can similar, but more
precise, approximation be found?

• Issues to address: stability, constraint satisfaction

Thursday, April 15, 2010

Solution Complexity

• Fields to look at:
- computational geometry
- control engineering
- computer science

• Possible directions:
- exploit geometric properties of the solution
- approximate the solution by a heuristic control law
- data compression (ZIP-like approach for explicit MPC?)

• Issues to address:
- tradeoff between off-line calculation effort and gained complexity

reduction

Thursday, April 15, 2010

Control Evaluation

• Fields to look at: computational geometry, computer science
• Possible directions:

- map regions to points, then use nearest neighbor search
- can we learn something from point-and-click games?

Thursday, April 15, 2010

